Core Concepts
Actualism Adequate Determinism Agent-Causality Alternative Possibilities Causa Sui Causal Closure Causalism Causality Certainty Chance Chance Not Direct Cause Chaos Theory The Cogito Model Compatibilism Complexity Comprehensive Compatibilism Conceptual Analysis Contingency Control Could Do Otherwise Creativity Default Responsibility De-liberation Determination Determination Fallacy Determinism Disambiguation Double Effect Either Way Enlightenment Emergent Determinism Epistemic Freedom Ethical Fallacy Experimental Philosophy Extreme Libertarianism Event Has Many Causes Frankfurt Cases Free Choice Freedom of Action "Free Will" Free Will Axiom Free Will in Antiquity Free Will Mechanisms Free Will Requirements Free Will Theorem Future Contingency Hard Incompatibilism Idea of Freedom Illusion of Determinism Illusionism Impossibilism Incompatibilism Indeterminacy Indeterminism Infinities Laplace's Demon Libertarianism Liberty of Indifference Libet Experiments Luck Master Argument Modest Libertarianism Moral Necessity Moral Responsibility Moral Sentiments Mysteries Naturalism Necessity Noise Non-Causality Nonlocality Origination Paradigm Case Possibilism Possibilities Pre-determinism Predictability Probability Pseudo-Problem Random When?/Where? Rational Fallacy Reason Refutations Replay Responsibility Same Circumstances Scandal Science Advance Fallacy Second Thoughts Self-Determination Semicompatibilism Separability Soft Causality Special Relativity Standard Argument Supercompatibilism Superdeterminism Taxonomy Temporal Sequence Tertium Quid Torn Decision Two-Stage Models Ultimate Responsibility Uncertainty Up To Us Voluntarism What If Dennett and Kane Did Otherwise? Philosophers Mortimer Adler Rogers Albritton Alexander of Aphrodisias Samuel Alexander William Alston Anaximander G.E.M.Anscombe Anselm Louise Antony Thomas Aquinas Aristotle David Armstrong Harald Atmanspacher Robert Audi Augustine J.L.Austin A.J.Ayer Alexander Bain Mark Balaguer Jeffrey Barrett William Barrett William Belsham Henri Bergson George Berkeley Isaiah Berlin Richard J. Bernstein Bernard Berofsky Robert Bishop Max Black Susanne Bobzien Emil du Bois-Reymond Hilary Bok Laurence BonJour George Boole Émile Boutroux F.H.Bradley C.D.Broad Michael Burke Lawrence Cahoone C.A.Campbell Joseph Keim Campbell Rudolf Carnap Carneades Ernst Cassirer David Chalmers Roderick Chisholm Chrysippus Cicero Randolph Clarke Samuel Clarke Anthony Collins Antonella Corradini Diodorus Cronus Jonathan Dancy Donald Davidson Mario De Caro Democritus Daniel Dennett Jacques Derrida René Descartes Richard Double Fred Dretske John Dupré John Earman Laura Waddell Ekstrom Epictetus Epicurus Herbert Feigl Arthur Fine John Martin Fischer Frederic Fitch Owen Flanagan Luciano Floridi Philippa Foot Alfred Fouilleé Harry Frankfurt Richard L. Franklin Michael Frede Gottlob Frege Peter Geach Edmund Gettier Carl Ginet Alvin Goldman Gorgias Nicholas St. John Green H.Paul Grice Ian Hacking Ishtiyaque Haji Stuart Hampshire W.F.R.Hardie Sam Harris William Hasker R.M.Hare Georg W.F. Hegel Martin Heidegger Heraclitus R.E.Hobart Thomas Hobbes David Hodgson Shadsworth Hodgson Baron d'Holbach Ted Honderich Pamela Huby David Hume Ferenc Huoranszki William James Lord Kames Robert Kane Immanuel Kant Tomis Kapitan Walter Kaufmann Jaegwon Kim William King Hilary Kornblith Christine Korsgaard Saul Kripke Thomas Kuhn Andrea Lavazza Christoph Lehner Keith Lehrer Gottfried Leibniz Jules Lequyer Leucippus Michael Levin George Henry Lewes C.I.Lewis David Lewis Peter Lipton C. Lloyd Morgan John Locke Michael Lockwood E. Jonathan Lowe John R. Lucas Lucretius Alasdair MacIntyre Ruth Barcan Marcus James Martineau Storrs McCall Hugh McCann Colin McGinn Michael McKenna Brian McLaughlin John McTaggart Paul E. Meehl Uwe Meixner Alfred Mele Trenton Merricks John Stuart Mill Dickinson Miller G.E.Moore Thomas Nagel Otto Neurath Friedrich Nietzsche John Norton P.H.Nowell-Smith Robert Nozick William of Ockham Timothy O'Connor Parmenides David F. Pears Charles Sanders Peirce Derk Pereboom Steven Pinker Plato Karl Popper Porphyry Huw Price H.A.Prichard Protagoras Hilary Putnam Willard van Orman Quine Frank Ramsey Ayn Rand Michael Rea Thomas Reid Charles Renouvier Nicholas Rescher C.W.Rietdijk Richard Rorty Josiah Royce Bertrand Russell Paul Russell Gilbert Ryle Jean-Paul Sartre Kenneth Sayre T.M.Scanlon Moritz Schlick Arthur Schopenhauer John Searle Wilfrid Sellars Alan Sidelle Ted Sider Henry Sidgwick Walter Sinnott-Armstrong J.J.C.Smart Saul Smilansky Michael Smith Baruch Spinoza L. Susan Stebbing Isabelle Stengers George F. Stout Galen Strawson Peter Strawson Eleonore Stump Francisco Suárez Richard Taylor Teilhard de Chardin Kevin Timpe Mark Twain Peter Unger Peter van Inwagen Manuel Vargas John Venn Kadri Vihvelin Voltaire G.H. von Wright David Foster Wallace R. Jay Wallace W.G.Ward Ted Warfield Roy Weatherford C.F. von Weizsäcker William Whewell Alfred North Whitehead David Widerker David Wiggins Bernard Williams Timothy Williamson Ludwig Wittgenstein Susan Wolf Scientists Michael Arbib Walter Baade Bernard Baars Jeffrey Bada Leslie Ballentine Gregory Bateson John S. Bell Mara Beller Charles Bennett Ludwig von Bertalanffy Susan Blackmore Margaret Boden David Bohm Niels Bohr Ludwig Boltzmann Emile Borel Max Born Satyendra Nath Bose Walther Bothe Hans Briegel Leon Brillouin Stephen Brush Henry Thomas Buckle S. H. Burbury Donald Campbell Anthony Cashmore Eric Chaisson Gregory Chaitin Jean-Pierre Changeux Arthur Holly Compton John Conway John Cramer Francis Crick E. P. Culverwell Antonio Damasio Olivier Darrigol Charles Darwin Richard Dawkins Terrence Deacon Lüder Deecke Richard Dedekind Louis de Broglie Stanislas Dehaene Max Delbrück Abraham de Moivre Paul Dirac Hans Driesch John Eccles Arthur Stanley Eddington Gerald Edelman Paul Ehrenfest Albert Einstein Hugh Everett, III Franz Exner Richard Feynman R. A. Fisher David Foster Joseph Fourier Philipp Frank Steven Frautschi Edward Fredkin Lila Gatlin Michael Gazzaniga GianCarlo Ghirardi J. Willard Gibbs Nicolas Gisin Paul Glimcher Thomas Gold A. O. Gomes Brian Goodwin Joshua Greene Jacques Hadamard Mark Hadley Patrick Haggard J. B. S. Haldane Stuart Hameroff Augustin Hamon Sam Harris Hyman Hartman John-Dylan Haynes Donald Hebb Martin Heisenberg Werner Heisenberg John Herschel Art Hobson Jesper Hoffmeyer E. T. Jaynes William Stanley Jevons Roman Jakobson Pascual Jordan Ruth E. Kastner Stuart Kauffman Martin J. Klein William R. Klemm Christof Koch Simon Kochen Hans Kornhuber Stephen Kosslyn Ladislav Kovàč Leopold Kronecker Rolf Landauer Alfred Landé Pierre-Simon Laplace David Layzer Joseph LeDoux Benjamin Libet Seth Lloyd Hendrik Lorentz Josef Loschmidt Ernst Mach Donald MacKay Henry Margenau James Clerk Maxwell Ernst Mayr John McCarthy Warren McCulloch George Miller Stanley Miller Ulrich Mohrhoff Jacques Monod Emmy Noether Alexander Oparin Abraham Pais Howard Pattee Wolfgang Pauli Massimo Pauri Roger Penrose Steven Pinker Colin Pittendrigh Max Planck Susan Pockett Henri Poincaré Daniel Pollen Ilya Prigogine Hans Primas Adolphe Quételet Jürgen Renn Juan Roederer Jerome Rothstein David Ruelle Tilman Sauer Jürgen Schmidhuber Erwin Schrödinger Aaron Schurger Claude Shannon Charles Sherrington David Shiang Herbert Simon Dean Keith Simonton B. F. Skinner Lee Smolin Ray Solomonoff Roger Sperry John Stachel Henry Stapp Tom Stonier Antoine Suarez Leo Szilard Max Tegmark William Thomson (Kelvin) Giulio Tononi Peter Tse Vlatko Vedral Heinz von Foerster John von Neumann John B. Watson Daniel Wegner Steven Weinberg Paul A. Weiss John Wheeler Wilhelm Wien Norbert Wiener Eugene Wigner E. O. Wilson Stephen Wolfram H. Dieter Zeh Ernst Zermelo Wojciech Zurek Konrad Zuse Fritz Zwicky Presentations Biosemiotics Free Will Mental Causation James Symposium |
The Physics of Free Will
For information philosopy, the classical problem of reconciling free will with physical determinism is now seen to have been the wrong problem. The real problem is reconciling free will with indeterminism. The physical world is fundamentally undetermined, it began in chaos and remains chaotic and random at the atomic scale (as well as some macroscopic regions of the cosmos).
Even for large objects, the laws of physics are statistical laws. We have known this since Ludwig Boltzmann's work in 1877. Statistical physics was brilliantly confirmed at the level of atomic collisions by Max Born in 1926, and by Werner Heisenberg in 1927, with his quantum mechanical uncertainty principle. Unfortunately, antipathy to chance led many prominent physicists, then and now, to deny indeterminism and cling to a necessitarian deterministic physics.
Biologists knew even earlier, from Charles Darwin's work in 1859, that chance was the driver for evolution and so chance must be a real part of the universe. Indeed, it is known that quantum collisions of high-energy radiation with the macromolecules carrying genetic information create mutations that are a source of variation in the gene pool.
Charles Sanders Peirce, strongly influenced by Darwin, was the greatest philosopher to embrace chance, and he convinced his friend William James of it. James described the role of chance in free will in his essay, The Dilemma of Determinism.
Information philosophy has identified the cosmic creative processes (we call them "ergodic") that can overcome the chaotic tendency of indeterministic atomic collisions and create macroscopic, information-rich, structures. When these emergent structures are large enough, like the sun and planets, their motions become very well ordered and incredibly stable over time.
DNA has maintained its informational stability for nearly four billion years by adding error detection and correction processes.
Early Greeks like Anaximander saw the universe as a "cosmos" and imagined laws of nature that would explain the cosmos. Later the Stoic physicists identified these laws of nature with laws of God, proclaimed nature to be God, and said both were completely determined.
For the Greeks, the heavens became the paradigm of perfection and orderly repetitive motions without change. The sublunary world was the realm of change and decay. When, two thousand years later, Isaac Newton discovered apparently perfectly accurate dynamical laws of motion for the planets, he seemed to confirm a deterministic universe. But as Newton knew, and as Peirce and later Karl Popper were to argue, we never had observational evidence to support the presumed perfection. The physical laws had become a dogma of determinism.
Why is quantum uncertainty involved in the shaking together (co-agitare) of our agenda items, the real alternative possibilities for thought or action that allow us to say we "could have done otherwise?" There are three important reasons:
Neuroscientists have doubted we could ever locate a randomness generator in the brain. It needs to be small enough to be susceptible to microscopic quantum phenomena, yet capable of affecting the large macromolecular structures like neurons. Let's look at some of the proposals for quantum randomness in the brain.
Probably the first scientist to connect quantum uncertainty to free will was Arthur Stanley Eddington, who until 1927 (in his Gifford Lectures) was a staunch supporter of physical determinism. He then said in 1928 with the "advent of the quantum theory that physics is no longer pledged to a scheme of deterministic law." "We may note that science thereby withdraws its moral opposition to free will."
Eddington's critics accused him of confusing "free" electrons with human freedom. And a decade later, he backed away from quantum randomness as an explanation. He reluctantly concluded there is no "halfway house" between randomness and determinism - an echo of Hume's "no medium betwixt chance and an absolute necessity."
In 1929 Neils Bohr described his views of "complementarity" in the Fundamental Principles underlying the Description of Nature. He applied complementarity to life and organic nature, to mind and body, to subject and object, and, most importantly, to free volition and causality. Although his ideas are vaguely stated, we can see the dialectical reconciling of chance and determinism that goes back to Hegel, James, and Poincaré and forward to Compton, Gomes, Popper, Margenau, and Eccles.
Arthur Holly Compton had shown in 1922 that photons (X-rays) could collide with electrons, showing both matter and radiation had wave-particle properties. In 1931 he proposed that photoelectric cells could work as amplifiers of random quantum events and provide room for human freedom.
Compton's naive model for free will came to be known as the massive switch amplifier. It was open to the ancient criticism that we can not take responsibility for random actions caused by chance. Compton defended the amplifier, but like Eddington, later denied he was trying to show that human freedom was a direct consequence of the uncertainty principle.
If physics were the sole source of our information, he said, we should expect men's actions to follow certain (sic) rules of chance. He said in 1957 that "When one exercises freedom, by his act of choice he is himself adding a factor not supplied by the [random] physical conditions and is thus himself determining what will occur."
Compton was probably a dualist who thought mind was a separate substance. Other scientists who relied on quantum uncertainty to provide alternate possibilities, to be selected among by a non-physical mind, were John Eccles and Henry Margenau.
Our Cogito model simply identifies the source of randomness as the inevitable noise, both thermal noise and quantum noise, that affects both proper storage of information and accurate retrieval of that information at later times. These read/write errors are an appropriately random source of unpredictable new ideas and alternative action possibilities.
We need not look for tiny random-noise generators and amplifiers in specific parts of the brain, any more than the homunculi sometimes evoked by philosophers to parody an internal free agent like a Maxwell's Demon of the mind.
If the Micro Mind is a random generator of frequently outlandish and absurd possibilities (think of the unconscious and the Freudian id), the complementary Macro Mind is a macroscopic structure so large that quantum effects are neglible. This is the critical apparatus that makes predictable - and adequately determined - decisions based on our character and values. Thus we can feel fully responsible for our choices, morally and legally.
Philosophers of Mind, whether hard determinist or compatibilist, should recognize this Macro Mind as everything we need to make a carefully reasoned choice that provides moral responsibility.
But now it is clear that our choices include self-generated random possibilities for thought and action that no external agent, natural or supernatural, and not even ourselves looking internally, can predict.
Our Cogito model gives the determinists what they say they want, an intelligible account of free will in which our decisions are adequately determined, yet completely free and sometimes unpredictable by any external agent and even by ourselves some of the time. We are unpredictably creative.
For Teachers
For Scholars
"As it has oftren been remarked, a few light quanta are sufficient to produce a visual impression." (Neils Bohr, Atomic Theory and the Description of Nature, p.117)
|