Citation for this page in APA citation style.           Close


Philosophers

Mortimer Adler
Rogers Albritton
Alexander of Aphrodisias
Samuel Alexander
William Alston
Anaximander
G.E.M.Anscombe
Anselm
Louise Antony
Thomas Aquinas
Aristotle
David Armstrong
Harald Atmanspacher
Robert Audi
Augustine
J.L.Austin
A.J.Ayer
Alexander Bain
Mark Balaguer
Jeffrey Barrett
William Barrett
William Belsham
Henri Bergson
George Berkeley
Isaiah Berlin
Richard J. Bernstein
Bernard Berofsky
Robert Bishop
Max Black
Susanne Bobzien
Emil du Bois-Reymond
Hilary Bok
Laurence BonJour
George Boole
Émile Boutroux
Daniel Boyd
F.H.Bradley
C.D.Broad
Michael Burke
Lawrence Cahoone
C.A.Campbell
Joseph Keim Campbell
Rudolf Carnap
Carneades
Nancy Cartwright
Gregg Caruso
Ernst Cassirer
David Chalmers
Roderick Chisholm
Chrysippus
Cicero
Tom Clark
Randolph Clarke
Samuel Clarke
Anthony Collins
Antonella Corradini
Diodorus Cronus
Jonathan Dancy
Donald Davidson
Mario De Caro
Democritus
Daniel Dennett
Jacques Derrida
René Descartes
Richard Double
Fred Dretske
John Dupré
John Earman
Laura Waddell Ekstrom
Epictetus
Epicurus
Austin Farrer
Herbert Feigl
Arthur Fine
John Martin Fischer
Frederic Fitch
Owen Flanagan
Luciano Floridi
Philippa Foot
Alfred Fouilleé
Harry Frankfurt
Richard L. Franklin
Bas van Fraassen
Michael Frede
Gottlob Frege
Peter Geach
Edmund Gettier
Carl Ginet
Alvin Goldman
Gorgias
Nicholas St. John Green
H.Paul Grice
Ian Hacking
Ishtiyaque Haji
Stuart Hampshire
W.F.R.Hardie
Sam Harris
William Hasker
R.M.Hare
Georg W.F. Hegel
Martin Heidegger
Heraclitus
R.E.Hobart
Thomas Hobbes
David Hodgson
Shadsworth Hodgson
Baron d'Holbach
Ted Honderich
Pamela Huby
David Hume
Ferenc Huoranszki
Frank Jackson
William James
Lord Kames
Robert Kane
Immanuel Kant
Tomis Kapitan
Walter Kaufmann
Jaegwon Kim
William King
Hilary Kornblith
Christine Korsgaard
Saul Kripke
Thomas Kuhn
Andrea Lavazza
Christoph Lehner
Keith Lehrer
Gottfried Leibniz
Jules Lequyer
Leucippus
Michael Levin
Joseph Levine
George Henry Lewes
C.I.Lewis
David Lewis
Peter Lipton
C. Lloyd Morgan
John Locke
Michael Lockwood
Arthur O. Lovejoy
E. Jonathan Lowe
John R. Lucas
Lucretius
Alasdair MacIntyre
Ruth Barcan Marcus
Tim Maudlin
James Martineau
Nicholas Maxwell
Storrs McCall
Hugh McCann
Colin McGinn
Michael McKenna
Brian McLaughlin
John McTaggart
Paul E. Meehl
Uwe Meixner
Alfred Mele
Trenton Merricks
John Stuart Mill
Dickinson Miller
G.E.Moore
Thomas Nagel
Otto Neurath
Friedrich Nietzsche
John Norton
P.H.Nowell-Smith
Robert Nozick
William of Ockham
Timothy O'Connor
Parmenides
David F. Pears
Charles Sanders Peirce
Derk Pereboom
Steven Pinker
U.T.Place
Plato
Karl Popper
Porphyry
Huw Price
H.A.Prichard
Protagoras
Hilary Putnam
Willard van Orman Quine
Frank Ramsey
Ayn Rand
Michael Rea
Thomas Reid
Charles Renouvier
Nicholas Rescher
C.W.Rietdijk
Richard Rorty
Josiah Royce
Bertrand Russell
Paul Russell
Gilbert Ryle
Jean-Paul Sartre
Kenneth Sayre
T.M.Scanlon
Moritz Schlick
John Duns Scotus
Arthur Schopenhauer
John Searle
Wilfrid Sellars
David Shiang
Alan Sidelle
Ted Sider
Henry Sidgwick
Walter Sinnott-Armstrong
Peter Slezak
J.J.C.Smart
Saul Smilansky
Michael Smith
Baruch Spinoza
L. Susan Stebbing
Isabelle Stengers
George F. Stout
Galen Strawson
Peter Strawson
Eleonore Stump
Francisco Suárez
Richard Taylor
Kevin Timpe
Mark Twain
Peter Unger
Peter van Inwagen
Manuel Vargas
John Venn
Kadri Vihvelin
Voltaire
G.H. von Wright
David Foster Wallace
R. Jay Wallace
W.G.Ward
Ted Warfield
Roy Weatherford
C.F. von Weizsäcker
William Whewell
Alfred North Whitehead
David Widerker
David Wiggins
Bernard Williams
Timothy Williamson
Ludwig Wittgenstein
Susan Wolf

Scientists

David Albert
Michael Arbib
Walter Baade
Bernard Baars
Jeffrey Bada
Leslie Ballentine
Marcello Barbieri
Gregory Bateson
Horace Barlow
John S. Bell
Mara Beller
Charles Bennett
Ludwig von Bertalanffy
Susan Blackmore
Margaret Boden
David Bohm
Niels Bohr
Ludwig Boltzmann
Emile Borel
Max Born
Satyendra Nath Bose
Walther Bothe
Jean Bricmont
Hans Briegel
Leon Brillouin
Stephen Brush
Henry Thomas Buckle
S. H. Burbury
Melvin Calvin
Donald Campbell
Sadi Carnot
Anthony Cashmore
Eric Chaisson
Gregory Chaitin
Jean-Pierre Changeux
Rudolf Clausius
Arthur Holly Compton
John Conway
Jerry Coyne
John Cramer
Francis Crick
E. P. Culverwell
Antonio Damasio
Olivier Darrigol
Charles Darwin
Richard Dawkins
Terrence Deacon
Lüder Deecke
Richard Dedekind
Louis de Broglie
Stanislas Dehaene
Max Delbrück
Abraham de Moivre
Bernard d'Espagnat
Paul Dirac
Hans Driesch
John Eccles
Arthur Stanley Eddington
Gerald Edelman
Paul Ehrenfest
Manfred Eigen
Albert Einstein
George F. R. Ellis
Hugh Everett, III
Franz Exner
Richard Feynman
R. A. Fisher
David Foster
Joseph Fourier
Philipp Frank
Steven Frautschi
Edward Fredkin
Benjamin Gal-Or
Howard Gardner
Lila Gatlin
Michael Gazzaniga
Nicholas Georgescu-Roegen
GianCarlo Ghirardi
J. Willard Gibbs
James J. Gibson
Nicolas Gisin
Paul Glimcher
Thomas Gold
A. O. Gomes
Brian Goodwin
Joshua Greene
Dirk ter Haar
Jacques Hadamard
Mark Hadley
Patrick Haggard
J. B. S. Haldane
Stuart Hameroff
Augustin Hamon
Sam Harris
Ralph Hartley
Hyman Hartman
Jeff Hawkins
John-Dylan Haynes
Donald Hebb
Martin Heisenberg
Werner Heisenberg
John Herschel
Basil Hiley
Art Hobson
Jesper Hoffmeyer
Don Howard
John H. Jackson
William Stanley Jevons
Roman Jakobson
E. T. Jaynes
Pascual Jordan
Eric Kandel
Ruth E. Kastner
Stuart Kauffman
Martin J. Klein
William R. Klemm
Christof Koch
Simon Kochen
Hans Kornhuber
Stephen Kosslyn
Daniel Koshland
Ladislav Kovàč
Leopold Kronecker
Rolf Landauer
Alfred Landé
Pierre-Simon Laplace
Karl Lashley
David Layzer
Joseph LeDoux
Gerald Lettvin
Gilbert Lewis
Benjamin Libet
David Lindley
Seth Lloyd
Werner Loewenstein
Hendrik Lorentz
Josef Loschmidt
Alfred Lotka
Ernst Mach
Donald MacKay
Henry Margenau
Owen Maroney
David Marr
Humberto Maturana
James Clerk Maxwell
Ernst Mayr
John McCarthy
Warren McCulloch
N. David Mermin
George Miller
Stanley Miller
Ulrich Mohrhoff
Jacques Monod
Vernon Mountcastle
Emmy Noether
Donald Norman
Alexander Oparin
Abraham Pais
Howard Pattee
Wolfgang Pauli
Massimo Pauri
Wilder Penfield
Roger Penrose
Steven Pinker
Colin Pittendrigh
Walter Pitts
Max Planck
Susan Pockett
Henri Poincaré
Daniel Pollen
Ilya Prigogine
Hans Primas
Zenon Pylyshyn
Henry Quastler
Adolphe Quételet
Pasco Rakic
Nicolas Rashevsky
Lord Rayleigh
Frederick Reif
Jürgen Renn
Giacomo Rizzolati
A.A. Roback
Emil Roduner
Juan Roederer
Jerome Rothstein
David Ruelle
David Rumelhart
Robert Sapolsky
Tilman Sauer
Ferdinand de Saussure
Jürgen Schmidhuber
Erwin Schrödinger
Aaron Schurger
Sebastian Seung
Thomas Sebeok
Franco Selleri
Claude Shannon
Charles Sherrington
Abner Shimony
Herbert Simon
Dean Keith Simonton
Edmund Sinnott
B. F. Skinner
Lee Smolin
Ray Solomonoff
Roger Sperry
John Stachel
Henry Stapp
Tom Stonier
Antoine Suarez
Leo Szilard
Max Tegmark
Teilhard de Chardin
Libb Thims
William Thomson (Kelvin)
Richard Tolman
Giulio Tononi
Peter Tse
Alan Turing
C. S. Unnikrishnan
Francisco Varela
Vlatko Vedral
Vladimir Vernadsky
Mikhail Volkenstein
Heinz von Foerster
Richard von Mises
John von Neumann
Jakob von Uexküll
C. H. Waddington
John B. Watson
Daniel Wegner
Steven Weinberg
Paul A. Weiss
Herman Weyl
John Wheeler
Jeffrey Wicken
Wilhelm Wien
Norbert Wiener
Eugene Wigner
E. O. Wilson
Günther Witzany
Stephen Wolfram
H. Dieter Zeh
Semir Zeki
Ernst Zermelo
Wojciech Zurek
Konrad Zuse
Fritz Zwicky

Presentations

Biosemiotics
Free Will
Mental Causation
James Symposium
 
Martin J. Klein
Martin J. Klein was the earliest historian of science to recognize the importance of Albert Einstein's contributions to quantum mechanics and how they had been neglected in the years since the development of the "new quantum theory" by Werner Heisenberg, Max Born, Erwin Schrödinger, and others in the late 1920's.

In his first contribution, Klein compared Einstein's quantum physics with his work on relativity,

Einstein's work on relativity has generated millions of words of comment and exposition on all levels of discourse. Comparatively little has been written about his probings, over a period of a quarter of a century, into the theory of radiation and its significance for our understanding of the physical world. And yet the boldness and clarity of Einstein's insight show forth as characteristically in these studies as in his more famous investigations into the nature of space and time.

Klein does not yet emphasize that Einstein's work on quantum physics is being ignored or dismissed by the leading physicists of the time, but he does point out how unusual Einstein's insight was into the dualism between continuous field theories and discrete particle theories.

This dualism between particle and field was probably noticed by others besides Einstein, but there is no record that anyone else suggested removing it in the drastic way that Einstein then proposed. (I am not even aware that anyone else was disturbed by the dualism at that time, and yet it was already a major theme in Einstein's own work.)

Klein turns next to Einstein's 1906 work on specific heats, which was accepted by several physicists as proving the importance of the quantum theory, though not for his "very revolutionary" ideas about the "light quantum." It is cited as solving the problem of anomalous specific heats.

Just as Einstein's "light quantum hypothesis" was mostly ignored until the mid-1920's, even as the 1905 paper is always cited for its explanation of the "photoelectric effect," Klein tells us that Einstein was using specific heat as an application of a much deeper insight into quantum theory. Einstein saw energy levels or "states," with transitions between them that he called "jumps," absorbing or emitting a quantum of energy , long before the 1913 Bohr atom.

Klein begins by quoting Einstein

we must now assume that, for ions which can vibrate at a definite frequency and which make possible the exchange of energy between radiation and matter, the manifold of possible states must be narrower than it is for the bodies in our direct experience. We must in fact assume that the mechanism of energy transfer is such that the energy can assume only the values 0, hv, 2hv, ....nhv

Einstein saw that these possible "states" occupy a narrow energy range. Most of the energy levels in the classical continuum would not be accessible. Energy can not be absorbed unless the amount exactly matches the energy difference between the ground level and the excited level. This is a clear anticipation of the "stationary states" and quantum jumps of Niels Bohr atomic model six years later.

Einstein discovered that not all radiative transitions in matter are possible, that the possible transitions have a narrow band of energies because the available states or levels are narrow.

Some "degrees of freedom" in matter are said to be "frozen out" below some temperature. The vibrational oscillations of molecules and vibrations of ions in solid matter require a minimum of energy below which they cannot absorb heat. Once the temperature rises so that average energy E = kT (k is Boltzmann's constant) reaches the energy of the quantum state, energy can be absorbed into that degree of freedom.

Klein says Einstein's paper is inadequately described by those who refer to it as the quantum theory of solids. Einstein is concerned with apparent violations of the principle of the equipartition of energy, a foundation of classical physics.

It would be more to the point to say that the paper was written to show that there was, or would have to be, a quantum theory, and that the range of phenomena which could be clarified by such a theory included the properties of matter as well as those of radiation. Einstein was showing in a new way how deeply the foundations of classical physics had been undermined.

Klein quotes Marcel Brillouin as saying at the first Solvay Conference (in 1911)

"It seems certain that from now on we will have to introduce into our physical and chemical ideas a discontinuity, something that changes in jumps, of which we had no notion at all a few years ago"

Thus the "quantum jumps" caused by discontinuous radiative transitions between discrete energy levels in matter that we associate with the "Bohr Atom" were well known at least a year before Bohr encountered the Balmer series formula for spectral lines in hydrogen. Bohr is known to have studied the 1911 Solvay conference closely.

In his third article on Einstein in the 1960's, Klein showed that Einstein had explained wave-particle duality nearly two decades before Erwin Schrödinger's wave mechanics and Werner Heisenberg's matrix mechanics battled for the best explanation of quantum theory.

Klein lamented the great oversimplification of the history of quantum theory that came from focusing on the 1913 work of Niels Bohr.

The most common form that the oversimplification takes is an almost exclusive concentration on the problems of atomic structure and atomic spectra from Bohr’s work in 1913 to the new quantum mechanics of 1925-26...

The problems were not those of atomic structure but those of the dual nature of radiation and the properties of gases. The methods were not so much those of the “old quantum theory” as those of statistical mechanics. And the presiding genius and principal guide was not Bohr, but Einstein. It is the line of approach that led up to Schrodinger’s wave mechanics.

In his last major work on Einstein, part of the Harvard Einstein: A Centenary Volume, in 1979, Klein tried to emphasize Einstein's great contributions to quantum theory, even if he remained a critic.

When the new quantum physics was developed, Einstein greeted it sceptically even though he had done as much as anyone to bring it into being. He recognized its great successes, but he never accepted it as the new fundamental theory it claimed to be.

After a comprehensive summary of Einstein's work on quantum theory, Klein portrayed Einstein as out of step with almost everyone in the new field of quantum mechanics.

[He] never accepted the finality of the quantum mechanical renunciation of causality, or its claim to be the new fundamental theory. From the Solvay Conference of 1927, where the quantum mechanical synthesis had its first major discussion, to the end of his life, Einstein never stopped raising questions about this new approach to physics. At first he tried to propose conceptual experiments that would prove the logical inconsistency of quantum mechanics, but these attempts were all turned aside successfully by Bohr and his collaborators. In 1935 Einstein began to emphasize another basic limitation in quantum mechanics, as he saw it. He argued that its description of physical reality was essentially incomplete, that there were elements of physical reality that had no counterparts in the theory. Bohr’s response to this was to reject Einstein’s criterion of physical reality as ambiguous, and to claim that only through his own principle of complementarity could one arrive at an experimentally meaningful criterion of completeness.

Einstein recognized the power of quantum mechanics, calling it ‘the most successful physical theory of our time’, but he would not admit it as the basis for theoretical physics. He refused to give up the idea that there was such a thing as ‘the real state of a physical system, something that objectively exists independently of observation and measurement, and which can, in principle, be described in physical terms’. Einstein was convinced that when a theory giving a complete physical description was developed, the position of quantum mechanics in the framework of this future physics would be analogous to that of statistical mechanics in the framework of classical physics. It would be the theory to use when only incomplete information was available or when only an incomplete description was wanted.

Einstein’s colleagues could only regret that he had chosen to follow a path separate from the rest. As Born wrote: ‘Many of us regard this as a tragedy—for him, as he gropes his way in loneliness, and for us, who miss our leader and standard-bearer.’ To Einstein himself the choice was inevitable. He was prepared for the ‘accusation’ brought against him sometimes ‘in the friendliest of fashions’, but sometimes not: he was accused of ‘rigid adherence to classical theory’. But, he wrote, it was not so easy to declare guilt or innocence of this charge ‘because it is by no means immediately clear what is meant by “classical theory” ’. Newtonian mechanics was a classical theory, but it had not been an acceptable claimant as the fundamental theory underlying physics since the introduction of field theory. Field theories were never completed—neither Maxwell’s theory of electromagnetism nor his own theory of gravitation—since they were never extended to include the sources of the field in a non-singular way. Einstein did plead guilty to adherence to the programme of field theory; for it was his hope that a complete field theory would provide the basis for all of physics, giving that complete description he missed in the quantum mechanics he had helped so much to develop. He saw his whole career as striving to create a new unified foundation for physics. That was what he meant when he ended his scientific autobiography by writing that he had tried to show ‘how the efforts of a life hang together and why they have led to expectations of a definite form’.

.

References
Einstein’s first paper on quanta. The Natural Philosopher, 2(1963), 59-86.

Einstein and the wave-particle duality. The Natural Philosopher, 1964. Bobs-Merrill

Einstein, specific heats, and the early quantum theory. Science, 148(3667), 1965, 173-180.

The First Phase of the Bohr-Einstein Dialogue, in Historical Studies in the Physical Sciences, Vol. 2 (1970), pp. iv, 1-39

Einstein and the development of quantum physics, in Einstein: A Centenary Volume, Harvard University Press, 1979 The First Phase of the Bohr-Einstein Dialogue

Normal | Teacher | Scholar