Philosophers
Mortimer Adler Rogers Albritton Alexander of Aphrodisias Samuel Alexander William Alston Anaximander G.E.M.Anscombe Anselm Louise Antony Thomas Aquinas Aristotle David Armstrong Harald Atmanspacher Robert Audi Augustine J.L.Austin A.J.Ayer Alexander Bain Mark Balaguer Jeffrey Barrett William Barrett William Belsham Henri Bergson George Berkeley Isaiah Berlin Richard J. Bernstein Bernard Berofsky Robert Bishop Max Black Susanne Bobzien Emil du Bois-Reymond Hilary Bok Laurence BonJour George Boole Émile Boutroux Daniel Boyd F.H.Bradley C.D.Broad Michael Burke Lawrence Cahoone C.A.Campbell Joseph Keim Campbell Rudolf Carnap Carneades Nancy Cartwright Gregg Caruso Ernst Cassirer David Chalmers Roderick Chisholm Chrysippus Cicero Tom Clark Randolph Clarke Samuel Clarke Anthony Collins Antonella Corradini Diodorus Cronus Jonathan Dancy Donald Davidson Mario De Caro Democritus Daniel Dennett Jacques Derrida René Descartes Richard Double Fred Dretske John Dupré John Earman Laura Waddell Ekstrom Epictetus Epicurus Austin Farrer Herbert Feigl Arthur Fine John Martin Fischer Frederic Fitch Owen Flanagan Luciano Floridi Philippa Foot Alfred Fouilleé Harry Frankfurt Richard L. Franklin Bas van Fraassen Michael Frede Gottlob Frege Peter Geach Edmund Gettier Carl Ginet Alvin Goldman Gorgias Nicholas St. John Green H.Paul Grice Ian Hacking Ishtiyaque Haji Stuart Hampshire W.F.R.Hardie Sam Harris William Hasker R.M.Hare Georg W.F. Hegel Martin Heidegger Heraclitus R.E.Hobart Thomas Hobbes David Hodgson Shadsworth Hodgson Baron d'Holbach Ted Honderich Pamela Huby David Hume Ferenc Huoranszki Frank Jackson William James Lord Kames Robert Kane Immanuel Kant Tomis Kapitan Walter Kaufmann Jaegwon Kim William King Hilary Kornblith Christine Korsgaard Saul Kripke Thomas Kuhn Andrea Lavazza Christoph Lehner Keith Lehrer Gottfried Leibniz Jules Lequyer Leucippus Michael Levin Joseph Levine George Henry Lewes C.I.Lewis David Lewis Peter Lipton C. Lloyd Morgan John Locke Michael Lockwood Arthur O. Lovejoy E. Jonathan Lowe John R. Lucas Lucretius Alasdair MacIntyre Ruth Barcan Marcus Tim Maudlin James Martineau Nicholas Maxwell Storrs McCall Hugh McCann Colin McGinn Michael McKenna Brian McLaughlin John McTaggart Paul E. Meehl Uwe Meixner Alfred Mele Trenton Merricks John Stuart Mill Dickinson Miller G.E.Moore Thomas Nagel Otto Neurath Friedrich Nietzsche John Norton P.H.Nowell-Smith Robert Nozick William of Ockham Timothy O'Connor Parmenides David F. Pears Charles Sanders Peirce Derk Pereboom Steven Pinker U.T.Place Plato Karl Popper Porphyry Huw Price H.A.Prichard Protagoras Hilary Putnam Willard van Orman Quine Frank Ramsey Ayn Rand Michael Rea Thomas Reid Charles Renouvier Nicholas Rescher C.W.Rietdijk Richard Rorty Josiah Royce Bertrand Russell Paul Russell Gilbert Ryle Jean-Paul Sartre Kenneth Sayre T.M.Scanlon Moritz Schlick John Duns Scotus Arthur Schopenhauer John Searle Wilfrid Sellars David Shiang Alan Sidelle Ted Sider Henry Sidgwick Walter Sinnott-Armstrong Peter Slezak J.J.C.Smart Saul Smilansky Michael Smith Baruch Spinoza L. Susan Stebbing Isabelle Stengers George F. Stout Galen Strawson Peter Strawson Eleonore Stump Francisco Suárez Richard Taylor Kevin Timpe Mark Twain Peter Unger Peter van Inwagen Manuel Vargas John Venn Kadri Vihvelin Voltaire G.H. von Wright David Foster Wallace R. Jay Wallace W.G.Ward Ted Warfield Roy Weatherford C.F. von Weizsäcker William Whewell Alfred North Whitehead David Widerker David Wiggins Bernard Williams Timothy Williamson Ludwig Wittgenstein Susan Wolf Scientists David Albert Michael Arbib Walter Baade Bernard Baars Jeffrey Bada Leslie Ballentine Marcello Barbieri Gregory Bateson Horace Barlow John S. Bell Mara Beller Charles Bennett Ludwig von Bertalanffy Susan Blackmore Margaret Boden David Bohm Niels Bohr Ludwig Boltzmann Emile Borel Max Born Satyendra Nath Bose Walther Bothe Jean Bricmont Hans Briegel Leon Brillouin Stephen Brush Henry Thomas Buckle S. H. Burbury Melvin Calvin Donald Campbell Sadi Carnot Anthony Cashmore Eric Chaisson Gregory Chaitin Jean-Pierre Changeux Rudolf Clausius Arthur Holly Compton John Conway Jerry Coyne John Cramer Francis Crick E. P. Culverwell Antonio Damasio Olivier Darrigol Charles Darwin Richard Dawkins Terrence Deacon Lüder Deecke Richard Dedekind Louis de Broglie Stanislas Dehaene Max Delbrück Abraham de Moivre Bernard d'Espagnat Paul Dirac Hans Driesch John Eccles Arthur Stanley Eddington Gerald Edelman Paul Ehrenfest Manfred Eigen Albert Einstein George F. R. Ellis Hugh Everett, III Franz Exner Richard Feynman R. A. Fisher David Foster Joseph Fourier Philipp Frank Steven Frautschi Edward Fredkin Benjamin Gal-Or Howard Gardner Lila Gatlin Michael Gazzaniga Nicholas Georgescu-Roegen GianCarlo Ghirardi J. Willard Gibbs James J. Gibson Nicolas Gisin Paul Glimcher Thomas Gold A. O. Gomes Brian Goodwin Joshua Greene Dirk ter Haar Jacques Hadamard Mark Hadley Patrick Haggard J. B. S. Haldane Stuart Hameroff Augustin Hamon Sam Harris Ralph Hartley Hyman Hartman Jeff Hawkins John-Dylan Haynes Donald Hebb Martin Heisenberg Werner Heisenberg John Herschel Basil Hiley Art Hobson Jesper Hoffmeyer Don Howard John H. Jackson William Stanley Jevons Roman Jakobson E. T. Jaynes Pascual Jordan Eric Kandel Ruth E. Kastner Stuart Kauffman Martin J. Klein William R. Klemm Christof Koch Simon Kochen Hans Kornhuber Stephen Kosslyn Daniel Koshland Ladislav Kovàč Leopold Kronecker Rolf Landauer Alfred Landé Pierre-Simon Laplace Karl Lashley David Layzer Joseph LeDoux Gerald Lettvin Gilbert Lewis Benjamin Libet David Lindley Seth Lloyd Werner Loewenstein Hendrik Lorentz Josef Loschmidt Alfred Lotka Ernst Mach Donald MacKay Henry Margenau Owen Maroney David Marr Humberto Maturana James Clerk Maxwell Ernst Mayr John McCarthy Warren McCulloch N. David Mermin George Miller Stanley Miller Ulrich Mohrhoff Jacques Monod Vernon Mountcastle Emmy Noether Donald Norman Alexander Oparin Abraham Pais Howard Pattee Wolfgang Pauli Massimo Pauri Wilder Penfield Roger Penrose Steven Pinker Colin Pittendrigh Walter Pitts Max Planck Susan Pockett Henri Poincaré Daniel Pollen Ilya Prigogine Hans Primas Zenon Pylyshyn Henry Quastler Adolphe Quételet Pasco Rakic Nicolas Rashevsky Lord Rayleigh Frederick Reif Jürgen Renn Giacomo Rizzolati A.A. Roback Emil Roduner Juan Roederer Jerome Rothstein David Ruelle David Rumelhart Robert Sapolsky Tilman Sauer Ferdinand de Saussure Jürgen Schmidhuber Erwin Schrödinger Aaron Schurger Sebastian Seung Thomas Sebeok Franco Selleri Claude Shannon Charles Sherrington Abner Shimony Herbert Simon Dean Keith Simonton Edmund Sinnott B. F. Skinner Lee Smolin Ray Solomonoff Roger Sperry John Stachel Henry Stapp Tom Stonier Antoine Suarez Leo Szilard Max Tegmark Teilhard de Chardin Libb Thims William Thomson (Kelvin) Richard Tolman Giulio Tononi Peter Tse Alan Turing C. S. Unnikrishnan Francisco Varela Vlatko Vedral Vladimir Vernadsky Mikhail Volkenstein Heinz von Foerster Richard von Mises John von Neumann Jakob von Uexküll C. H. Waddington John B. Watson Daniel Wegner Steven Weinberg Paul A. Weiss Herman Weyl John Wheeler Jeffrey Wicken Wilhelm Wien Norbert Wiener Eugene Wigner E. O. Wilson Günther Witzany Stephen Wolfram H. Dieter Zeh Semir Zeki Ernst Zermelo Wojciech Zurek Konrad Zuse Fritz Zwicky Presentations Biosemiotics Free Will Mental Causation James Symposium |
Ulrich Mohrhoff
Ulrich Mohrhoff trained as a physicist in Göttingen and at the Indian Institute of Science in Bangalore. He does research in the foundations of physics and looks for connections between quantum physics and Indian philosophy/psychology, especially the Vedas and Upanishads. He has investigated the "free-will problem" from the standpoint of interactions between mind and body, and formulated a new interpretation of quantum mechanics that he calls the Pondicherry Interpretation.
In his 1999 article, "The Physics of Interactionism," Mohrhoff investigated "another hard problem" (beyond David Chalmers's consciousness), namely "how anything material can have freedom." He says:
Denying randomness is the second part of the standard argument against free will
By 'freedom' I mean a person's ability to behave in a purposive, non-random fashion that is not determined by neurophysiological structure and physical law. I do not mean the absence of other determining factors, as this would render freedom synonymous with randomness... Physics has been invoked both to refute and to support psycho-physical interactionism, the view that mind and matter are two mutually irreducible, interacting domains. Thus it has been held against interactionism that it implies violations of the laws of physics, notably the law of energy conservation. I examine the meaning of conservation laws in physics and show that in fact no valid argument against the interactionist theory can be drawn from them. In defence of interactionism it has been argued that mind can act on matter through an apparent loophole in physical determinism, without violating physical laws. I show that this argument is equally fallacious. This leads to the conclusion that the indeterminism of quantum mechanics cannot be the physical correlate of free will; if there is a causally efficacious non-material mind, then the behaviour of matter cannot be fully governed by physical laws. I show that the best (if not the only) way of formulating departures from the 'normal', physically determined behaviour of matter is in terms of modifications of the electromagnetic interactions between particles. I also show that mental states and events are non-spatial, and that departures from the 'normal' behaviour of matter, when caused by mental events, are not amenable to mathematical description.
Today we see "determinism" as an abstract idea that emerges from the chaotic microcosmos.
Mohrhoff examines the possibility of a "causal primary," an antecedent cause that is not itself caused. This is the classical causa sui, the "uncaused cause" of Aristotle and others. Indeterministic quantum events have been the leading candidate for such causes since Arthur Stanley Eddington's 1927 book The Nature of the Physical World announced the demise of determinism. He says:
The absence of causal primaries is often called 'the causal closure of the physical world', where 'physical' means 'non-mental' rather than 'governed by the laws of physics'.Mohrhoff attempts to show that mind is "not spatial" and that makes it not amenable to a mathematical description (for example, one describable in terms of electromagnetic fields with conservation of energy and momentum). He reaches the following conclusions: (1) The conservation of energy and momentum is a consequence of the homogeneity of time and of space. This is warranted for systems that are causally closed. As to material systems that are open to causal influences from non-material mind, either energy/momentum is/are ill-defined or there is no reason why it/they should be conserved. (2) Assuming that part but not all of matter is causally open to non-material mind, it makes sense to attribute (non-conserved) energy and momentum even to physical systems that interact with non-material mind. (3) The causal efficacy of non-material mind implies departures from the statistical laws of quantum physics. These departures are capable of being formulated in terms of modifications, by the conscious self, of the electromagnetic interactions between particles; and they are more consistently formulated in this manner. (4) Because the electromagnetic field is a summary representation of effects on the motion of particles, the effects caused by mental events are necessarily among the effects represented by it. It is not that one cannot formulate the effects of the self in terms of a separate probability field, to use Margenau's (1984) term. The point is that this field would be indistinguishable from a contribution to the electromagnetic field, which makes it obvious that departures from the laws of physics are involved. Thinking of the effects of the self as contributions to the electromagnetic field is preferable for two reasons. First, it eschews the contentious notion that measurement-like events take place in the unobserved brain. Second, it leads to a more unified treatment of causality. There is no reason whatever for having probabilities determined twice over, once during their deterministic evolution by the physically determined vector potential, and once at the end through a superimposed probability field generated by the self. (5) Quantum-mechanical indeterminism cannot be the physical correlate of free will. Free will implies departures from the laws of physics. (6) Mind is non-spatial. There is no point in attributing positions to mental states and events. (7) The departures from the physical laws caused by non-physical mental events are not amenable to mathematical description. It is worth emphasizing that they are not therefore random. They could be necessitated by something of a primarily qualitative nature, something that manifests itself in quantitative, spatio-temporal terms but is not reducible to these terms.
The Pondicherry Interpretation of Quantum
Mechanics
Mohrhoff has formulated an ambitious interpretation of quantum mechanics. His interpretation:
...proceeds from the recognition that the fundamental theoretical framework of physics is a probability algorithm, which serves to describe an objective fuzziness (the literal meaning of Heisenberg's term 'Unschärfe', usually mistranslated as 'uncertainty') by assigning objective probabilities to the possible outcomes of unperformed measurements. Although it rejects attempts to construe quantum states as evolving ontological states, it arrives at an objective description of the quantum world that owes nothing to observers or the goings-on in physics laboratories. In fact, unless such attempts are rejected, quantum theory's true ontological implications cannot be seen.Mohrhoff says the role of the "observer" is a source of confusion and that wave functions do not provide only "subjective" knowledge. Quantum mechanics is not epistemology, despite the attempts of many "interpreters" to make it so, it provides our best "objective" ontology. There are facts about the quantum world.
The Mohrhoff-Stapp Debate
Ulrich Mohrhoff reacted to Henry Stapp's 2001 article "Quantum Theory and the Role of Mind in Nature with the claim that it contained 18 errors, primarily the result of misunderstandings or misinterpretations of standard quantum mechanics and its application to mental causation. (See "Mohrhoff on Stapp.") Stapp was generous in answering Mohrhoff's biting criticism with a fine sense of humor. He takes Mohrhoff's 18 error claims as generating a Buddhist "18-fold way" which result in 18 questions with 18 possible right (Yes/No) answers. Stapp worries that he has only one chance in 250,000 of getting the answers all right (2-18). (See "Stapp on Mohrhoff.")
Then take a look at our critical comparison of their questions and answers. See "The Mohrhoff-Stapp Debate."
The AuroCafe
Mohrhoff now blogs regularly on his "Aurocafe" newsletter.
Works
The World According to Quantum Mechanics: Why the Laws of Physics Make Perfect Sense After All (2011)
The World According to Quantum Mechanics: Why the Laws of Physics Make Perfect Sense After All (Second Edition Kindle eBook. 2018)
Objective probability and quantum fuzziness 2009 (PDF)
Quantum Mechanics Explained 2006 (PDF)
Pondicherry Interpretation of Quantum Mechanics 2005 (PDF)
This Quantum World - Mohrhoff's website/blog
Mohrhoff's Papers and Presentations
Quantum Theory and the Role of Mind in Nature
The World According to Quantum Mechanics (Or, the 18 Errors of Henry P. Stapp) (Mohrhoff on Stapp)
The 18-Fold Way (Stapp on Mohrhoff)
"Manifesting the Quantum World" (Foundations of Physics, 2014)
"Quantum mechanics in a new light" (Foundations of Science, 2016)
"Niels Bohr, objectivity, and the irreversibility of measurements" (Quantum Studies: Mathematics and Foundations, 2019):
For Teachers
For Scholars
|