Philosophers
Mortimer Adler Rogers Albritton Alexander of Aphrodisias Samuel Alexander William Alston Anaximander G.E.M.Anscombe Anselm Louise Antony Thomas Aquinas Aristotle David Armstrong Harald Atmanspacher Robert Audi Augustine J.L.Austin A.J.Ayer Alexander Bain Mark Balaguer Jeffrey Barrett William Barrett William Belsham Henri Bergson George Berkeley Isaiah Berlin Richard J. Bernstein Bernard Berofsky Robert Bishop Max Black Susanne Bobzien Emil du Bois-Reymond Hilary Bok Laurence BonJour George Boole Émile Boutroux Daniel Boyd F.H.Bradley C.D.Broad Michael Burke Lawrence Cahoone C.A.Campbell Joseph Keim Campbell Rudolf Carnap Carneades Nancy Cartwright Gregg Caruso Ernst Cassirer David Chalmers Roderick Chisholm Chrysippus Cicero Tom Clark Randolph Clarke Samuel Clarke Anthony Collins Antonella Corradini Diodorus Cronus Jonathan Dancy Donald Davidson Mario De Caro Democritus Daniel Dennett Jacques Derrida René Descartes Richard Double Fred Dretske John Dupré John Earman Laura Waddell Ekstrom Epictetus Epicurus Austin Farrer Herbert Feigl Arthur Fine John Martin Fischer Frederic Fitch Owen Flanagan Luciano Floridi Philippa Foot Alfred Fouilleé Harry Frankfurt Richard L. Franklin Bas van Fraassen Michael Frede Gottlob Frege Peter Geach Edmund Gettier Carl Ginet Alvin Goldman Gorgias Nicholas St. John Green H.Paul Grice Ian Hacking Ishtiyaque Haji Stuart Hampshire W.F.R.Hardie Sam Harris William Hasker R.M.Hare Georg W.F. Hegel Martin Heidegger Heraclitus R.E.Hobart Thomas Hobbes David Hodgson Shadsworth Hodgson Baron d'Holbach Ted Honderich Pamela Huby David Hume Ferenc Huoranszki Frank Jackson William James Lord Kames Robert Kane Immanuel Kant Tomis Kapitan Walter Kaufmann Jaegwon Kim William King Hilary Kornblith Christine Korsgaard Saul Kripke Thomas Kuhn Andrea Lavazza Christoph Lehner Keith Lehrer Gottfried Leibniz Jules Lequyer Leucippus Michael Levin Joseph Levine George Henry Lewes C.I.Lewis David Lewis Peter Lipton C. Lloyd Morgan John Locke Michael Lockwood Arthur O. Lovejoy E. Jonathan Lowe John R. Lucas Lucretius Alasdair MacIntyre Ruth Barcan Marcus Tim Maudlin James Martineau Nicholas Maxwell Storrs McCall Hugh McCann Colin McGinn Michael McKenna Brian McLaughlin John McTaggart Paul E. Meehl Uwe Meixner Alfred Mele Trenton Merricks John Stuart Mill Dickinson Miller G.E.Moore Thomas Nagel Otto Neurath Friedrich Nietzsche John Norton P.H.Nowell-Smith Robert Nozick William of Ockham Timothy O'Connor Parmenides David F. Pears Charles Sanders Peirce Derk Pereboom Steven Pinker Plato Karl Popper Porphyry Huw Price H.A.Prichard Protagoras Hilary Putnam Willard van Orman Quine Frank Ramsey Ayn Rand Michael Rea Thomas Reid Charles Renouvier Nicholas Rescher C.W.Rietdijk Richard Rorty Josiah Royce Bertrand Russell Paul Russell Gilbert Ryle Jean-Paul Sartre Kenneth Sayre T.M.Scanlon Moritz Schlick John Duns Scotus Arthur Schopenhauer John Searle Wilfrid Sellars David Shiang Alan Sidelle Ted Sider Henry Sidgwick Walter Sinnott-Armstrong J.J.C.Smart Saul Smilansky Michael Smith Baruch Spinoza L. Susan Stebbing Isabelle Stengers George F. Stout Galen Strawson Peter Strawson Eleonore Stump Francisco Suárez Richard Taylor Kevin Timpe Mark Twain Peter Unger Peter van Inwagen Manuel Vargas John Venn Kadri Vihvelin Voltaire G.H. von Wright David Foster Wallace R. Jay Wallace W.G.Ward Ted Warfield Roy Weatherford C.F. von Weizsäcker William Whewell Alfred North Whitehead David Widerker David Wiggins Bernard Williams Timothy Williamson Ludwig Wittgenstein Susan Wolf Scientists David Albert Michael Arbib Walter Baade Bernard Baars Jeffrey Bada Leslie Ballentine Marcello Barbieri Gregory Bateson Horace Barlow John S. Bell Mara Beller Charles Bennett Ludwig von Bertalanffy Susan Blackmore Margaret Boden David Bohm Niels Bohr Ludwig Boltzmann Emile Borel Max Born Satyendra Nath Bose Walther Bothe Jean Bricmont Hans Briegel Leon Brillouin Stephen Brush Henry Thomas Buckle S. H. Burbury Melvin Calvin Donald Campbell Sadi Carnot Anthony Cashmore Eric Chaisson Gregory Chaitin Jean-Pierre Changeux Rudolf Clausius Arthur Holly Compton John Conway Jerry Coyne John Cramer Francis Crick E. P. Culverwell Antonio Damasio Olivier Darrigol Charles Darwin Richard Dawkins Terrence Deacon Lüder Deecke Richard Dedekind Louis de Broglie Stanislas Dehaene Max Delbrück Abraham de Moivre Bernard d'Espagnat Paul Dirac Hans Driesch John Eccles Arthur Stanley Eddington Gerald Edelman Paul Ehrenfest Manfred Eigen Albert Einstein George F. R. Ellis Hugh Everett, III Franz Exner Richard Feynman R. A. Fisher David Foster Joseph Fourier Philipp Frank Steven Frautschi Edward Fredkin Benjamin Gal-Or Howard Gardner Lila Gatlin Michael Gazzaniga Nicholas Georgescu-Roegen GianCarlo Ghirardi J. Willard Gibbs James J. Gibson Nicolas Gisin Paul Glimcher Thomas Gold A. O. Gomes Brian Goodwin Joshua Greene Dirk ter Haar Jacques Hadamard Mark Hadley Patrick Haggard J. B. S. Haldane Stuart Hameroff Augustin Hamon Sam Harris Ralph Hartley Hyman Hartman Jeff Hawkins John-Dylan Haynes Donald Hebb Martin Heisenberg Werner Heisenberg John Herschel Basil Hiley Art Hobson Jesper Hoffmeyer Don Howard John H. Jackson William Stanley Jevons Roman Jakobson E. T. Jaynes Pascual Jordan Eric Kandel Ruth E. Kastner Stuart Kauffman Martin J. Klein William R. Klemm Christof Koch Simon Kochen Hans Kornhuber Stephen Kosslyn Daniel Koshland Ladislav Kovàč Leopold Kronecker Rolf Landauer Alfred Landé Pierre-Simon Laplace Karl Lashley David Layzer Joseph LeDoux Gerald Lettvin Gilbert Lewis Benjamin Libet David Lindley Seth Lloyd Werner Loewenstein Hendrik Lorentz Josef Loschmidt Alfred Lotka Ernst Mach Donald MacKay Henry Margenau Owen Maroney David Marr Humberto Maturana James Clerk Maxwell Ernst Mayr John McCarthy Warren McCulloch N. David Mermin George Miller Stanley Miller Ulrich Mohrhoff Jacques Monod Vernon Mountcastle Emmy Noether Donald Norman Alexander Oparin Abraham Pais Howard Pattee Wolfgang Pauli Massimo Pauri Wilder Penfield Roger Penrose Steven Pinker Colin Pittendrigh Walter Pitts Max Planck Susan Pockett Henri Poincaré Daniel Pollen Ilya Prigogine Hans Primas Zenon Pylyshyn Henry Quastler Adolphe Quételet Pasco Rakic Nicolas Rashevsky Lord Rayleigh Frederick Reif Jürgen Renn Giacomo Rizzolati A.A. Roback Emil Roduner Juan Roederer Jerome Rothstein David Ruelle David Rumelhart Robert Sapolsky Tilman Sauer Ferdinand de Saussure Jürgen Schmidhuber Erwin Schrödinger Aaron Schurger Sebastian Seung Thomas Sebeok Franco Selleri Claude Shannon Charles Sherrington Abner Shimony Herbert Simon Dean Keith Simonton Edmund Sinnott B. F. Skinner Lee Smolin Ray Solomonoff Roger Sperry John Stachel Henry Stapp Tom Stonier Antoine Suarez Leo Szilard Max Tegmark Teilhard de Chardin Libb Thims William Thomson (Kelvin) Richard Tolman Giulio Tononi Peter Tse Alan Turing C. S. Unnikrishnan Francisco Varela Vlatko Vedral Vladimir Vernadsky Mikhail Volkenstein Heinz von Foerster Richard von Mises John von Neumann Jakob von Uexküll C. H. Waddington John B. Watson Daniel Wegner Steven Weinberg Paul A. Weiss Herman Weyl John Wheeler Jeffrey Wicken Wilhelm Wien Norbert Wiener Eugene Wigner E. O. Wilson Günther Witzany Stephen Wolfram H. Dieter Zeh Semir Zeki Ernst Zermelo Wojciech Zurek Konrad Zuse Fritz Zwicky Presentations Biosemiotics Free Will Mental Causation James Symposium |
Giulio Tononi
Giulio Tononi is a neuroscientist who worked with Gerald Edelman at his Neuroscience Institute in San Diego and is now at University of Wisconsin, where he specializes in the study of sleep.
In 2000, Tononi and Edelman collaborated on the book A Universe of Consciousness,
Tononi elaborated Edelman's theory that all physical systems have elements of consciousness, basing it on what Tononi calls "Integrated Information Theory" or IIT.
IIT hopes to show that many physical (material) systems are conscious. His mathematical theory predicts whether a material system is conscious and to what degree it is conscious. It then attempts to explain what particular experience it is having.
IIT is a reductionist, deterministic, and causal theory. According to IIT, a system's consciousness is an intrinsic, fundamental property of any physical system.
In that respect, IIT resembles panpsychism, a central element in David Chalmers' solution for what he calls the "hard problem of consciousness."
Integrated Information Technology
IIT is a formal logical and mathematical system of axioms and postulates that purports to describe a physical (material) system that is conscious of itself (intrinsic) and of the external world (extrinsic).
Each of IIT's five axioms and related postulates make unjustifiable claims about physical reality and about the phenomenology (appearance) of consciousness. They should be understood as assumptions describing a formal system that might be implemented in a digital computer that can simulate his theory of consciousness.
Christof Koch on IIT
Before I come to the mathematical innards of the theory, let me address one general objection to IIT that I frequently encounter. It runs along the following lines. Even if everything about IIT is correct, why should it feel like anything to have a maximum of integrated information? Why should a system that instantiates the five essential properties of consciousness— intrinsic existence, composition, information, integration, and exclusion— form a conscious experience? IIT might correctly describe aspects of systems that support consciousness. But, at least in principle, skeptics might be able to imagine a system that has all these properties but which still doesn't feeling like anything. [For example, David Chalmers' "zombies."] I answer this conceivability argument in the following manner. By construction, these five properties fully delimit any experience. Nothing else is left out. What people mean by subjective feelings is precisely described by these five axioms. Any additional "feeling" axiom is superfluous. Is there a mathematically unassailable proof that satisfying those five axioms is equivalent to feeling like something? Not to my knowledge. But I'm a scientist, concerned with the universe I find myself in, and not with logical necessity. And in this universe, so I argue in this book, any system that obeys these five axioms is conscious.
Tononi on Free Will
according to IIT (i) what actually exists is an entire cause-effect structure, much more than the first-order cause-effect repertoires of atomic elements; (ii) when a conceptual structure changes much more happens than first-order events; and (iii) its changes are caused by much more than first-order causation. This view, together with the central identity of IIT, which says that an experience is a conceptual structure that is maximally irreducible intrinsically, has several implications for the notions of free will and responsibility (Tononi 2013). First, for a choice to be conscious, a system’s cause-effect power must be exerted intrinsically - upon itself: the conceptual structure must be “causa sui.” In other words, a conscious choice must be caused by mechanisms intrinsic to a complex rather that by extrinsic factors. This requirement is in line with the established notion that, to be free, a choice must be autonomous - decided from within and not imposed from without. Second, for a choice to be highly conscious, the conceptual structures that correspond to the experience of deliberating and deciding (“willing”) must be highly irreducible - they must be composed of many concepts, including a large number of higher-order ones. In other words, a conscious choice involves a large amount of cause-effect power and is definitely not reducible to first-order causes and effects. Hence, the reductionist assumption that ultimately “my neurons made me do it” is just as definitely incorrect. Seen this way, a system that only exists extrinsically, such as a feed-forward network, is not “free” at all,, but at the mercy of external inputs. In this case nothing exists from the intrinsic perspective - there is nothing it is like to be a feed-forward network. But if intrinsically there is nothing, it cannot cause anything either. There is only extrinsic causation - a machine “going through the motions” for the benefit of an external manipulator/observer. On the other hand, a system that exists intrinsically, but only minimally so - say two coupled elements that can only turn on and off together, achieving minimal values of Φ, may well be free, but it has minimal “will.” In other words, while its choices are free because they are determined intrinsically, very little is being determined - just two first-order concepts. By contrast, a complex that specifies a rich conceptual structure of high Φ is both free and has high will: its choices are determined intrinsically and they involve a large amount of cause-effect power. That is to say, to have free will, one needs to be as free as possible from external causes, and as determined as possible by internal causes - the multitude of concepts that compose an experience. In short, more consciousness, more free will. The claim that the more one’s choices are intrinsically determined, the more one has free will, may at first seem at odds with the widespread conviction that determinism and free will are incompatible. However, at issue is not determinism, but the combination of the extrinsic perspective and reductionism. Consider again the role of our neurons when we make a decision. The extrinsic perspective applied to neurons shows us that what each neuron does is determined extrinsically, by its inputs; hence neurons are not free, just like transistors are not. Moreover, ontological reductionism leads us to believe that ultimately all there is are neurons; hence none of us, being constituted of neurons, is free, just like a digital computer is not free. In this scenario, consciousness and conscious decisions are inevitably epiphenomenal: they merely “go along for the ride” but have no causal role to play, as the neurons do all the causal work (ref). If we look at the brain this way, it does not seem to be fundamentally different from any other machine, say a digital computer running a simulation, except that the elements that update their state are neurons rather than transistors. In both cases, we envision a machine “going through its motions”, which leaves no room for free will. As was argued above, however, there is much more to the neural substrate of consciousness than just neurons and their extrinsic determinants: if we adhere to maximally irreducible cause-effect power as the criterion for existence, what exists when we make a conscious choice is a rich conceptual structure, involving much more than first-order causation by individual neurons. Moreover, the cause-effect power is exerted intrinsically, rather than extrinsically: it is not the extrinsic inputs to each neurons that make things happen, but the conceptual structure acting upon itself. In summary, when I deliberate and make a decision, what exists and causes the decision is my own consciousness – nothing less and nothing more, and the decision is free because it has been brought about by intrinsic causes and effects. By contrast, when a digital simulation of my neurons unfolds, even if it leads to the same behavior, what exists are just individual transistors, whose individual choices are determined extrinsically: there is no consciousness, no intrinsic causation, and therefore no free will. Finally, it is often suggested that one’s will can be free only if one might have acted otherwise – the so-called requirement for alternative possibilities. But according to IIT, determinism is the friend, not the foe of free will, since any indeterminism reduces cause-effect power and therefore reduces free will. Said otherwise, if I were to find myself in the same exact situation, I would want to choose in exactly the same way, since in this way the choice would not be left to chance, but would be fully determined by me - a “me” that includes the full richness of my consciousness – my understanding, my memories, and my values.We see that Tononi, like his close colleagues Gerald Edelman, Christof Koch, and Daniel Dennett, is a compatibilist. He is also a reductionist and determinist. He accepts the standard argument against free will. We are not free to do otherwise in the "exact same situation." There are no alternative possibilities.
IIT and the I-Phi Experience Recorder and Reproducer
The fundamental hypothesis of the ERR is the extension of Donald Hebb's insight that "neurons that fire together will wire together " to say "neurons that have been wired together will fire together." And this hypothesis was published in 2008 by Tononi in the Proceedings of the National Academy of Sciences ("A BOLD window into brain waves." PNAS (41) 15641-15642)
References
Tononi and Koch on Consciousness, Royal Society, 19 May 2015
Wikipedia on IIT
Scholarpedia on IIT
For Teachers
For Scholars
|