Citation for this page in APA citation style.           Close


Philosophers

Mortimer Adler
Rogers Albritton
Alexander of Aphrodisias
Samuel Alexander
William Alston
Anaximander
G.E.M.Anscombe
Anselm
Louise Antony
Thomas Aquinas
Aristotle
David Armstrong
Harald Atmanspacher
Robert Audi
Augustine
J.L.Austin
A.J.Ayer
Alexander Bain
Mark Balaguer
Jeffrey Barrett
William Barrett
William Belsham
Henri Bergson
George Berkeley
Isaiah Berlin
Richard J. Bernstein
Bernard Berofsky
Robert Bishop
Max Black
Susanne Bobzien
Emil du Bois-Reymond
Hilary Bok
Laurence BonJour
George Boole
Émile Boutroux
Daniel Boyd
F.H.Bradley
C.D.Broad
Michael Burke
Lawrence Cahoone
C.A.Campbell
Joseph Keim Campbell
Rudolf Carnap
Carneades
Nancy Cartwright
Gregg Caruso
Ernst Cassirer
David Chalmers
Roderick Chisholm
Chrysippus
Cicero
Tom Clark
Randolph Clarke
Samuel Clarke
Anthony Collins
Antonella Corradini
Diodorus Cronus
Jonathan Dancy
Donald Davidson
Mario De Caro
Democritus
Daniel Dennett
Jacques Derrida
René Descartes
Richard Double
Fred Dretske
John Dupré
John Earman
Laura Waddell Ekstrom
Epictetus
Epicurus
Austin Farrer
Herbert Feigl
Arthur Fine
John Martin Fischer
Frederic Fitch
Owen Flanagan
Luciano Floridi
Philippa Foot
Alfred Fouilleé
Harry Frankfurt
Richard L. Franklin
Bas van Fraassen
Michael Frede
Gottlob Frege
Peter Geach
Edmund Gettier
Carl Ginet
Alvin Goldman
Gorgias
Nicholas St. John Green
H.Paul Grice
Ian Hacking
Ishtiyaque Haji
Stuart Hampshire
W.F.R.Hardie
Sam Harris
William Hasker
R.M.Hare
Georg W.F. Hegel
Martin Heidegger
Heraclitus
R.E.Hobart
Thomas Hobbes
David Hodgson
Shadsworth Hodgson
Baron d'Holbach
Ted Honderich
Pamela Huby
David Hume
Ferenc Huoranszki
Frank Jackson
William James
Lord Kames
Robert Kane
Immanuel Kant
Tomis Kapitan
Walter Kaufmann
Jaegwon Kim
William King
Hilary Kornblith
Christine Korsgaard
Saul Kripke
Thomas Kuhn
Andrea Lavazza
Christoph Lehner
Keith Lehrer
Gottfried Leibniz
Jules Lequyer
Leucippus
Michael Levin
Joseph Levine
George Henry Lewes
C.I.Lewis
David Lewis
Peter Lipton
C. Lloyd Morgan
John Locke
Michael Lockwood
Arthur O. Lovejoy
E. Jonathan Lowe
John R. Lucas
Lucretius
Alasdair MacIntyre
Ruth Barcan Marcus
Tim Maudlin
James Martineau
Nicholas Maxwell
Storrs McCall
Hugh McCann
Colin McGinn
Michael McKenna
Brian McLaughlin
John McTaggart
Paul E. Meehl
Uwe Meixner
Alfred Mele
Trenton Merricks
John Stuart Mill
Dickinson Miller
G.E.Moore
Thomas Nagel
Otto Neurath
Friedrich Nietzsche
John Norton
P.H.Nowell-Smith
Robert Nozick
William of Ockham
Timothy O'Connor
Parmenides
David F. Pears
Charles Sanders Peirce
Derk Pereboom
Steven Pinker
U.T.Place
Plato
Karl Popper
Porphyry
Huw Price
H.A.Prichard
Protagoras
Hilary Putnam
Willard van Orman Quine
Frank Ramsey
Ayn Rand
Michael Rea
Thomas Reid
Charles Renouvier
Nicholas Rescher
C.W.Rietdijk
Richard Rorty
Josiah Royce
Bertrand Russell
Paul Russell
Gilbert Ryle
Jean-Paul Sartre
Kenneth Sayre
T.M.Scanlon
Moritz Schlick
John Duns Scotus
Arthur Schopenhauer
John Searle
Wilfrid Sellars
David Shiang
Alan Sidelle
Ted Sider
Henry Sidgwick
Walter Sinnott-Armstrong
Peter Slezak
J.J.C.Smart
Saul Smilansky
Michael Smith
Baruch Spinoza
L. Susan Stebbing
Isabelle Stengers
George F. Stout
Galen Strawson
Peter Strawson
Eleonore Stump
Francisco Suárez
Richard Taylor
Kevin Timpe
Mark Twain
Peter Unger
Peter van Inwagen
Manuel Vargas
John Venn
Kadri Vihvelin
Voltaire
G.H. von Wright
David Foster Wallace
R. Jay Wallace
W.G.Ward
Ted Warfield
Roy Weatherford
C.F. von Weizsäcker
William Whewell
Alfred North Whitehead
David Widerker
David Wiggins
Bernard Williams
Timothy Williamson
Ludwig Wittgenstein
Susan Wolf

Scientists

David Albert
Michael Arbib
Walter Baade
Bernard Baars
Jeffrey Bada
Leslie Ballentine
Marcello Barbieri
Gregory Bateson
Horace Barlow
John S. Bell
Mara Beller
Charles Bennett
Ludwig von Bertalanffy
Susan Blackmore
Margaret Boden
David Bohm
Niels Bohr
Ludwig Boltzmann
Emile Borel
Max Born
Satyendra Nath Bose
Walther Bothe
Jean Bricmont
Hans Briegel
Leon Brillouin
Stephen Brush
Henry Thomas Buckle
S. H. Burbury
Melvin Calvin
Donald Campbell
Sadi Carnot
Anthony Cashmore
Eric Chaisson
Gregory Chaitin
Jean-Pierre Changeux
Rudolf Clausius
Arthur Holly Compton
John Conway
Jerry Coyne
John Cramer
Francis Crick
E. P. Culverwell
Antonio Damasio
Olivier Darrigol
Charles Darwin
Richard Dawkins
Terrence Deacon
Lüder Deecke
Richard Dedekind
Louis de Broglie
Stanislas Dehaene
Max Delbrück
Abraham de Moivre
Bernard d'Espagnat
Paul Dirac
Hans Driesch
John Eccles
Arthur Stanley Eddington
Gerald Edelman
Paul Ehrenfest
Manfred Eigen
Albert Einstein
George F. R. Ellis
Hugh Everett, III
Franz Exner
Richard Feynman
R. A. Fisher
David Foster
Joseph Fourier
Philipp Frank
Steven Frautschi
Edward Fredkin
Benjamin Gal-Or
Howard Gardner
Lila Gatlin
Michael Gazzaniga
Nicholas Georgescu-Roegen
GianCarlo Ghirardi
J. Willard Gibbs
James J. Gibson
Nicolas Gisin
Paul Glimcher
Thomas Gold
A. O. Gomes
Brian Goodwin
Joshua Greene
Dirk ter Haar
Jacques Hadamard
Mark Hadley
Patrick Haggard
J. B. S. Haldane
Stuart Hameroff
Augustin Hamon
Sam Harris
Ralph Hartley
Hyman Hartman
Jeff Hawkins
John-Dylan Haynes
Donald Hebb
Martin Heisenberg
Werner Heisenberg
John Herschel
Basil Hiley
Art Hobson
Jesper Hoffmeyer
Don Howard
John H. Jackson
William Stanley Jevons
Roman Jakobson
E. T. Jaynes
Pascual Jordan
Eric Kandel
Ruth E. Kastner
Stuart Kauffman
Martin J. Klein
William R. Klemm
Christof Koch
Simon Kochen
Hans Kornhuber
Stephen Kosslyn
Daniel Koshland
Ladislav Kovàč
Leopold Kronecker
Rolf Landauer
Alfred Landé
Pierre-Simon Laplace
Karl Lashley
David Layzer
Joseph LeDoux
Gerald Lettvin
Gilbert Lewis
Benjamin Libet
David Lindley
Seth Lloyd
Werner Loewenstein
Hendrik Lorentz
Josef Loschmidt
Alfred Lotka
Ernst Mach
Donald MacKay
Henry Margenau
Owen Maroney
David Marr
Humberto Maturana
James Clerk Maxwell
Ernst Mayr
John McCarthy
Warren McCulloch
N. David Mermin
George Miller
Stanley Miller
Ulrich Mohrhoff
Jacques Monod
Vernon Mountcastle
Emmy Noether
Donald Norman
Alexander Oparin
Abraham Pais
Howard Pattee
Wolfgang Pauli
Massimo Pauri
Wilder Penfield
Roger Penrose
Steven Pinker
Colin Pittendrigh
Walter Pitts
Max Planck
Susan Pockett
Henri Poincaré
Daniel Pollen
Ilya Prigogine
Hans Primas
Zenon Pylyshyn
Henry Quastler
Adolphe Quételet
Pasco Rakic
Nicolas Rashevsky
Lord Rayleigh
Frederick Reif
Jürgen Renn
Giacomo Rizzolati
A.A. Roback
Emil Roduner
Juan Roederer
Jerome Rothstein
David Ruelle
David Rumelhart
Robert Sapolsky
Tilman Sauer
Ferdinand de Saussure
Jürgen Schmidhuber
Erwin Schrödinger
Aaron Schurger
Sebastian Seung
Thomas Sebeok
Franco Selleri
Claude Shannon
Charles Sherrington
Abner Shimony
Herbert Simon
Dean Keith Simonton
Edmund Sinnott
B. F. Skinner
Lee Smolin
Ray Solomonoff
Roger Sperry
John Stachel
Henry Stapp
Tom Stonier
Antoine Suarez
Leo Szilard
Max Tegmark
Teilhard de Chardin
Libb Thims
William Thomson (Kelvin)
Richard Tolman
Giulio Tononi
Peter Tse
Alan Turing
C. S. Unnikrishnan
Francisco Varela
Vlatko Vedral
Vladimir Vernadsky
Mikhail Volkenstein
Heinz von Foerster
Richard von Mises
John von Neumann
Jakob von Uexküll
C. H. Waddington
John B. Watson
Daniel Wegner
Steven Weinberg
Paul A. Weiss
Herman Weyl
John Wheeler
Jeffrey Wicken
Wilhelm Wien
Norbert Wiener
Eugene Wigner
E. O. Wilson
Günther Witzany
Stephen Wolfram
H. Dieter Zeh
Semir Zeki
Ernst Zermelo
Wojciech Zurek
Konrad Zuse
Fritz Zwicky

Presentations

Biosemiotics
Free Will
Mental Causation
James Symposium
 
William Stanley Jevons

William Stanley Jevons was a logician and economic theorist who independently discovered the principle of marginal utility. He argued that since economics deals with quantities, it should be a mathematical science.

Jevons' 1874 book The Principles of Science: a Treatise on logic and Scientific Method criticized the Baconian method of induction as the source of new scientific ideas, instead claiming that random hypotheses are the source of novel creative new ideas.

In his 1880 Atlantic Monthly, essay, William James credits Jevons with the idea that new ideas come to us randomly.

To Professor Jevons is due the great credit of having emphatically pointed out how the genius of discovery depends altogether on the number of these random notions and guesses which visit the investigator's mind. To be fertile in hypotheses is the first requisite, and to be willing to throw them away the moment experience contradicts them is the next. The Baconian method of collating tables of instance may be a useful aid at certain times. But one might as well expect a chemist's note-book to write down the name of the body analyzed, or a weather table to sum itself up into a prediction of probabilities of its own accord, as to hope that the mere fact of mental confrontation with a certain series of facts will be sufficient to make any brain conceive their law. The conceiving of the law is a spontaneous variation in the strictest sense of the term. It flashes out of one brain, and no other, because the instability of that brain is such as to tip and upset itself in just that particular direction. But the important thing to notice is that the good flashes and the bad flashes, the triumphant hypotheses and the absurd conceits, are on an exact equality in respect of their origin. Aristotle's absurd Physics and his immortal Logic flow from one source: the forces that produce the one produce the other.
But, in his discussion of probability, Jevons appears to have been a complete determinist, even a pre-determinist.
Almost the greatest difficulty in this subject consists in acquiring a precise notion of the matter treated. What is it that we number, and measure, and calculate in the theory of probabilities? Is it belief, or opinion, or doubt, or knowledge, or chance, or necessity, or want of art?

Does probability exist in the things which are probable, or in the mind which regards them as such? The etymology of the name lends us no assistance: for, curiously enough, probable is ultimately the same word as provable, a good instance of one word becoming differentiated to two opposite meanings.

Chance cannot be the subject of the theory, because there is really no such thing as chance, regarded as producing and governing events. This name signifies falling, and the notion is continually used as a simile to express uncertainty, because we can seldom predict how a die, or a coin, or a leaf will fall, or when a bullet will hit the mark. But every one knows, on a little reflection, that it is in our knowledge the deficiency lies, not in the certainty of nature's laws. There is no doubt in lightning as to the point it shall strike; in the greatest storm there is nothing capricious; not a grain of sand lies upon the beach, but infinite knowledge would account for its lying there; and the course of every falling leaf is guided by the same principles of mechanics as rule the motions of the heavenly bodies.

Chance then exists not in nature, and cannot co-exist with knowledge; it is merely an expression for our ignorance of the causes in action, and our consequent inability to predict the result, or to bring it about infallibly. In nature the happening of a physical event has been pre-determined from the first fashioning of the universe. Probability belongs wholly to the mind; this indeed is proved by the fact that different minds may regard the very same event at the same time with totally different degrees of probability.

Nevertheless, Jevons is unequivocal that scientists have a freedom to hypothesize. In a section entitled Freedom of Theorizing,, which reminds us of the Free Will Axiom, he declares

It would be a complete error to suppose that the great discoverer is one who seizes at once unerringly upon the truth, or has any special method of divining it. In all probability the errors of the great mind far exceed in number those of the less vigorous one. Fertility of imagination and abundance of guesses at truth are among the first requisites of discovery; but the erroneous guesses must almost of necessity be many times as numerous as those which prove well founded. The weakest analogies, the most whimsical notions, the most apparently absurd theories, may pass through the teeming brain, and no record may remain of more than the hundredth part. There is nothing intrinsically absurd except that which proves contrary to logic and experience. The truest theories involve suppositions which are most inconceivable, and no limit can really be placed to the freedom of framing hypotheses.

Jevons on Induction and the Scientific Method

In the preface to The Principles of Science, Jevons deprecates Baconian induction in favor of a combination of hypotheses and deduction, with experimental testing the main criterion for accepting the ideas as new knowlege.

In following out my design of detecting the general methods of inductive investigation, I have found that the more elaborate and interesting processes of quantitative induction have their necessary foundation in the simpler science of Formal Logic. The earlier, and probably by far the least attractive part of this work, consists, therefore, in a statement of the so-called Fundamental Laws of Thought, and of the all-important Principle of Substitution, of which, as I think, all reasoning is a development. The whole procedure of inductive inquiry, in its most complex cases, is foreshadowed in the combinational view of Logic, which arises directly from these fundamental principles. Incidentally I have described the mechanical arrangements by which the use of the important form called the Logical Abecedarium, and the whole working of the combinational system of Formal Logic, may be rendered evident to the eye, and easy to the mind and hand.

The study both of Formal Logic and of the Theory of Probabilities, has led me to adopt the opinion that there is no such thing as a distinct method of induction as contrasted with deduction, but that induction is simply an inverse employment of deduction. Within the last century, a reaction has been setting in against the purely empirical procedure of Francis Bacon, and physicists have learnt to advocate the use of hypotheses. I take the extreme view of holding that Francis Bacon, although he correctly insisted upon constant reference to experience, had no correct notions as to the logical method by which, from particular facts, we educe laws of nature. I endeavour to show that hypothetical anticipation of nature is an essential part of inductive inquiry, and that it is the Newtonian method of deductive reasoning combined with elaborate experimental verification, which has led to all great triumphs of scientific research.

In attempting to give an explanation of this view of Scientific Method, I have first to show that the sciences of number and quantity repose upon and spring from the simpler and more general science of Logic. The Theory of Probability, which enables us to estimate and calculate quantities of knowledge, is then described, and especial attention is drawn to the Inverse Method of Probabilities, which involves, as I conceive, the true principle of inductive procedure. No inductive conclusions are more than probable, and I adopt the opinion that the theory of probability is an essential part of logical method, so that the logical value of every inductive result must be determined consciously or unconsciously, according to the principles of the inverse method of probability.

Jevons on Falsifiability

Haying once deliberately chosen, the philosopher may rightly entertain his theory with the strongest love and fidelity. He will neglect no objection; for he may chance at any time to meet a fatal one; but he will bear in mind tbe inconsiderable powers of the human mind compared the tasks it has to undertake. He will see that no theory can at first be reconciled with all possible objections simply because there may be many interfering causes, or the very consequences of the theory may have a complexity which prolonged investigation by successive generations of men may not exhaust. If then, a theory exhibit a number of very striking coincidences with fact, it must not be thrown aside until at least one conclusive discordance is proved, regard being had to possible error in establishing that discordance. In science and philosophy something must be risked. He who quails at the least will never establish a new truth.

Charles Sanders Peirce was greatly influenced by Jevons, visiting him on one of his U.S.-Coast-Survey-sponsored trips to Europe around the time (mis-1870's) Jevons published Principles of Science. Peirce called hypothesis formation "abduction," in his logical triad abduction-induction-deduction.


For Teachers
For Scholars

Chapter 1.5 - The Philosophers Chapter 2.1 - The Problem of Knowledge
Home Part Two - Knowledge
Normal | Teacher | Scholar