Philosophers
Mortimer Adler Rogers Albritton Alexander of Aphrodisias Samuel Alexander William Alston Anaximander G.E.M.Anscombe Anselm Louise Antony Thomas Aquinas Aristotle David Armstrong Harald Atmanspacher Robert Audi Augustine J.L.Austin A.J.Ayer Alexander Bain Mark Balaguer Jeffrey Barrett William Barrett William Belsham Henri Bergson George Berkeley Isaiah Berlin Richard J. Bernstein Bernard Berofsky Robert Bishop Max Black Susanne Bobzien Emil du Bois-Reymond Hilary Bok Laurence BonJour George Boole Émile Boutroux F.H.Bradley C.D.Broad Michael Burke Lawrence Cahoone C.A.Campbell Joseph Keim Campbell Rudolf Carnap Carneades Nancy Cartwright Gregg Caruso Ernst Cassirer David Chalmers Roderick Chisholm Chrysippus Cicero Randolph Clarke Samuel Clarke Anthony Collins Antonella Corradini Diodorus Cronus Jonathan Dancy Donald Davidson Mario De Caro Democritus Daniel Dennett Jacques Derrida René Descartes Richard Double Fred Dretske John Dupré John Earman Laura Waddell Ekstrom Epictetus Epicurus Austin Farrer Herbert Feigl Arthur Fine John Martin Fischer Frederic Fitch Owen Flanagan Luciano Floridi Philippa Foot Alfred Fouilleé Harry Frankfurt Richard L. Franklin Bas van Fraassen Michael Frede Gottlob Frege Peter Geach Edmund Gettier Carl Ginet Alvin Goldman Gorgias Nicholas St. John Green H.Paul Grice Ian Hacking Ishtiyaque Haji Stuart Hampshire W.F.R.Hardie Sam Harris William Hasker R.M.Hare Georg W.F. Hegel Martin Heidegger Heraclitus R.E.Hobart Thomas Hobbes David Hodgson Shadsworth Hodgson Baron d'Holbach Ted Honderich Pamela Huby David Hume Ferenc Huoranszki Frank Jackson William James Lord Kames Robert Kane Immanuel Kant Tomis Kapitan Walter Kaufmann Jaegwon Kim William King Hilary Kornblith Christine Korsgaard Saul Kripke Thomas Kuhn Andrea Lavazza Christoph Lehner Keith Lehrer Gottfried Leibniz Jules Lequyer Leucippus Michael Levin Joseph Levine George Henry Lewes C.I.Lewis David Lewis Peter Lipton C. Lloyd Morgan John Locke Michael Lockwood Arthur O. Lovejoy E. Jonathan Lowe John R. Lucas Lucretius Alasdair MacIntyre Ruth Barcan Marcus James Martineau Storrs McCall Hugh McCann Colin McGinn Michael McKenna Brian McLaughlin John McTaggart Paul E. Meehl Uwe Meixner Alfred Mele Trenton Merricks John Stuart Mill Dickinson Miller G.E.Moore Thomas Nagel Otto Neurath Friedrich Nietzsche John Norton P.H.Nowell-Smith Robert Nozick William of Ockham Timothy O'Connor Parmenides David F. Pears Charles Sanders Peirce Derk Pereboom Steven Pinker Plato Karl Popper Porphyry Huw Price H.A.Prichard Protagoras Hilary Putnam Willard van Orman Quine Frank Ramsey Ayn Rand Michael Rea Thomas Reid Charles Renouvier Nicholas Rescher C.W.Rietdijk Richard Rorty Josiah Royce Bertrand Russell Paul Russell Gilbert Ryle Jean-Paul Sartre Kenneth Sayre T.M.Scanlon Moritz Schlick Arthur Schopenhauer John Searle Wilfrid Sellars Alan Sidelle Ted Sider Henry Sidgwick Walter Sinnott-Armstrong J.J.C.Smart Saul Smilansky Michael Smith Baruch Spinoza L. Susan Stebbing Isabelle Stengers George F. Stout Galen Strawson Peter Strawson Eleonore Stump Francisco Suárez Richard Taylor Kevin Timpe Mark Twain Peter Unger Peter van Inwagen Manuel Vargas John Venn Kadri Vihvelin Voltaire G.H. von Wright David Foster Wallace R. Jay Wallace W.G.Ward Ted Warfield Roy Weatherford C.F. von Weizsäcker William Whewell Alfred North Whitehead David Widerker David Wiggins Bernard Williams Timothy Williamson Ludwig Wittgenstein Susan Wolf Scientists David Albert Michael Arbib Walter Baade Bernard Baars Jeffrey Bada Leslie Ballentine Gregory Bateson John S. Bell Mara Beller Charles Bennett Ludwig von Bertalanffy Susan Blackmore Margaret Boden David Bohm Niels Bohr Ludwig Boltzmann Emile Borel Max Born Satyendra Nath Bose Walther Bothe Jean Bricmont Hans Briegel Leon Brillouin Stephen Brush Henry Thomas Buckle S. H. Burbury Melvin Calvin Donald Campbell Sadi Carnot Anthony Cashmore Eric Chaisson Gregory Chaitin Jean-Pierre Changeux Rudolf Clausius Arthur Holly Compton John Conway Jerry Coyne John Cramer Francis Crick E. P. Culverwell Antonio Damasio Olivier Darrigol Charles Darwin Richard Dawkins Terrence Deacon Lüder Deecke Richard Dedekind Louis de Broglie Stanislas Dehaene Max Delbrück Abraham de Moivre Paul Dirac Hans Driesch John Eccles Arthur Stanley Eddington Gerald Edelman Paul Ehrenfest Manfred Eigen Albert Einstein George F. R. Ellis Hugh Everett, III Franz Exner Richard Feynman R. A. Fisher David Foster Joseph Fourier Philipp Frank Steven Frautschi Edward Fredkin Lila Gatlin Michael Gazzaniga Nicholas Georgescu-Roegen GianCarlo Ghirardi J. Willard Gibbs Nicolas Gisin Paul Glimcher Thomas Gold A. O. Gomes Brian Goodwin Joshua Greene Dirk ter Haar Jacques Hadamard Mark Hadley Patrick Haggard J. B. S. Haldane Stuart Hameroff Augustin Hamon Sam Harris Ralph Hartley Hyman Hartman John-Dylan Haynes Donald Hebb Martin Heisenberg Werner Heisenberg John Herschel Basil Hiley Art Hobson Jesper Hoffmeyer Don Howard William Stanley Jevons Roman Jakobson E. T. Jaynes Pascual Jordan Ruth E. Kastner Stuart Kauffman Martin J. Klein William R. Klemm Christof Koch Simon Kochen Hans Kornhuber Stephen Kosslyn Daniel Koshland Ladislav Kovàč Leopold Kronecker Rolf Landauer Alfred Landé Pierre-Simon Laplace David Layzer Joseph LeDoux Gilbert Lewis Benjamin Libet David Lindley Seth Lloyd Hendrik Lorentz Josef Loschmidt Ernst Mach Donald MacKay Henry Margenau Owen Maroney Humberto Maturana James Clerk Maxwell Ernst Mayr John McCarthy Warren McCulloch N. David Mermin George Miller Stanley Miller Ulrich Mohrhoff Jacques Monod Emmy Noether Alexander Oparin Abraham Pais Howard Pattee Wolfgang Pauli Massimo Pauri Roger Penrose Steven Pinker Colin Pittendrigh Max Planck Susan Pockett Henri Poincaré Daniel Pollen Ilya Prigogine Hans Primas Henry Quastler Adolphe Quételet Lord Rayleigh Jürgen Renn Juan Roederer Jerome Rothstein David Ruelle Tilman Sauer Jürgen Schmidhuber Erwin Schrödinger Aaron Schurger Sebastian Seung Thomas Sebeok Claude Shannon David Shiang Abner Shimony Herbert Simon Dean Keith Simonton B. F. Skinner Lee Smolin Ray Solomonoff Roger Sperry John Stachel Henry Stapp Tom Stonier Antoine Suarez Leo Szilard Max Tegmark Libb Thims William Thomson (Kelvin) Giulio Tononi Peter Tse Francisco Varela Vlatko Vedral Mikhail Volkenstein Heinz von Foerster Richard von Mises John von Neumann Jakob von Uexküll John B. Watson Daniel Wegner Steven Weinberg Paul A. Weiss Herman Weyl John Wheeler Wilhelm Wien Norbert Wiener Eugene Wigner E. O. Wilson Stephen Wolfram H. Dieter Zeh Ernst Zermelo Wojciech Zurek Konrad Zuse Fritz Zwicky Presentations Biosemiotics Free Will Mental Causation James Symposium |
Abraham Pais
Abraham Pais was the pre-eminent historian of quantum physics in the twentieth century. He wrote three masterpieces in the 1980's - Subtle is the Lord..., on the work of Albert Einstein (1982), Inward Bound on the history of the physics of matter and their forces , and Niels Bohr's Times. Unfortunately, as one of the many devoted protégées of Bohr, Pais lets Bohr's work overshadow the original source of many of the critical concepts of quantum mechanics, Albert Einstein.
In 1949 Pais had organized a Festschrift in honor of Einstein's seventieth birthday for the Reviews of Modern Physics, Volume 21, Issue 3. He did not himself write one of the thirty-seven articles, but it is striking that so little is about Einstein and quantum theory, primarily the Louis de Broglie's article and Phillip Frank's retrospective.
To be sure, thirty years later Pais published a long article "Einstein and the Quantum Theory" in 1979 in Rev Mod Phys, Volume 51, Issue 4. This appeared virtually unchanged as chapters 18-26 of Subtle is the Lord seven years later. Pais began with an outline of Einstein's contributions to quantum theory.
the physics community at large had received the light-quantum hypothesis with disbelief and with skepticism bordering on derision. As one of the architects of the pre-1925 quantum theory, the “old” quantum theory, Einstein had quickly found both enthusiastic and powerful support for one of his two major contributions to this field: the quantum theory of specific heat. (There is no reason to believe that such support satisfied any particular need in him.) By sharp contrast, from 1905 to 1923, he was a man apart in being the only one, or almost the only one, to take the light-quantum seriously. The critical reaction to Einstein’s light-quantum hypothesis of 1905 is of great importance for an understanding of the early developments in quantum physics. It was also a reaction without parallel in Einstein’s scientific career. Deservedly, his papers before 1905 had not attracted much attention. But his work on Brownian motion drew immediate and favorable response. The same is true for relativity. Planck became an advocate of the special theory only months after its publication; the younger generation took note as well. Lorentz, Hilbert, F. Klein, and others had followed the evolution of his ideas on general relativity; after 1915 they and others immediately started to work out its consequences. Attitudes to his work on unified field theory were largely critical. Many regarded these efforts as untimely, but few rejected the underlying idea out of hand. In regard to the quantum theory, however, Einstein almost constantly stood apart, from 1905 until his death. Those years cover two disparate periods, the first of which (1905-1923) I have just mentioned. During the second period, from 1926 until the end of his life, he was the only one, or again nearly the only one, to maintain a profoundly skeptical attitude toward quantum mechanics. I shall discuss Einstein’s position on quantum mechanics in Chapter 25, but cannot refrain from stating at once that Einstein’s skepticism should not be equated with a purely negative attitude. It is true that he was forever critical of quantum mechanics, but at the same time he had his own alternative program for a synthetic theory in which particles, fields, and quantum phenomena all would find their place. Einstein pursued this program from about 1920 (before the discovery of quantum mechanics!) until the end of his life. Numerous discussions with him in his later years have helped me gain a better understanding of his views. But let me first return to the days of the old quantum theory. Einstein’s contributions to it can be grouped under the following headings. (a) The Light-Quantum. In 1900 Planck discovered the blackbody radiation law without using light-quanta. In 1905 Einstein discovered light-quanta without using Planck’s law. Chapter 19 is devoted to the light-quantum hypothesis. The interplay between the ideas of Planck and Einstein is discussed. A brief history of the photoelectric effect from 1887 to 1915 is given. This Chapter ends with a detailed account of the reasons why the light-quantum paper drew such a negative response. (b) Specific Heats. Toward the end of the nineteenth century, there existed grave conflicts between the data on specific heats and their interpretation in terms of the equipartition theorem of classical statistical mechanics. In 1906 Einstein completed the first paper on quantum effects in the solid state. This paper showed the way out of these paradoxes and also played an important role in the final formulation of the third law of thermodynamics. These topics are discussed in Chapter 20. (c) The Photon. The light-quantum as originally defined was a parcel of energy. The concept of the photon as a particle with definite energy and momentum emerged only gradually. Einstein himself did not discuss photon momentum until 1917. Relativistic energy momentum conservation relations involving photons were not written down till 1923. Einstein’s role in these developments is discussed in Chapter 21, which begins with Einstein’s formulation in 1909 of the particle-wave duality for the case of electromagnetic radiation and also contains an account of his discovery of the A and B coefficients and of his earliest concern with the breakdown of classical causality. The Chapter concludes with remarks on the role of the Compton effect. The reader may wonder why the man who discovered the relation E = hv for light in 1905 and who propounded the special theory of relativity in that same year would not have stated sooner the relation p = hv/c. I shall comment on this question in Section 25d. (d) Einstein’s work on quantum statistics is treated in Chapter 23, which also includes a discussion of Bose’s contribution. (e) Einstein’s role as a key transitional figure in the discovery of wave mechanics will be discussed in Chapter 24.
References
Subtle is the Lord: The Science and the Life of Albert Einstein. Oxford University Press, USA. (1982)
Inward Bound: Of Matter and Forces in the Physical World. Oxford University Press, USA. (1986)
Niels Bohr's Times, In Physics, Philosophy, and Polity. Oxford University Press, USA. (1991)
Normal | Teacher | Scholar
|