Citation for this page in APA citation style.           Close


Philosophers

Mortimer Adler
Rogers Albritton
Alexander of Aphrodisias
Samuel Alexander
William Alston
Anaximander
G.E.M.Anscombe
Anselm
Louise Antony
Thomas Aquinas
Aristotle
David Armstrong
Harald Atmanspacher
Robert Audi
Augustine
J.L.Austin
A.J.Ayer
Alexander Bain
Mark Balaguer
Jeffrey Barrett
William Barrett
William Belsham
Henri Bergson
George Berkeley
Isaiah Berlin
Richard J. Bernstein
Bernard Berofsky
Robert Bishop
Max Black
Susanne Bobzien
Emil du Bois-Reymond
Hilary Bok
Laurence BonJour
George Boole
Émile Boutroux
Daniel Boyd
F.H.Bradley
C.D.Broad
Michael Burke
Lawrence Cahoone
C.A.Campbell
Joseph Keim Campbell
Rudolf Carnap
Carneades
Nancy Cartwright
Gregg Caruso
Ernst Cassirer
David Chalmers
Roderick Chisholm
Chrysippus
Cicero
Tom Clark
Randolph Clarke
Samuel Clarke
Anthony Collins
Antonella Corradini
Diodorus Cronus
Jonathan Dancy
Donald Davidson
Mario De Caro
Democritus
Daniel Dennett
Jacques Derrida
René Descartes
Richard Double
Fred Dretske
John Dupré
John Earman
Laura Waddell Ekstrom
Epictetus
Epicurus
Austin Farrer
Herbert Feigl
Arthur Fine
John Martin Fischer
Frederic Fitch
Owen Flanagan
Luciano Floridi
Philippa Foot
Alfred Fouilleé
Harry Frankfurt
Richard L. Franklin
Bas van Fraassen
Michael Frede
Gottlob Frege
Peter Geach
Edmund Gettier
Carl Ginet
Alvin Goldman
Gorgias
Nicholas St. John Green
H.Paul Grice
Ian Hacking
Ishtiyaque Haji
Stuart Hampshire
W.F.R.Hardie
Sam Harris
William Hasker
R.M.Hare
Georg W.F. Hegel
Martin Heidegger
Heraclitus
R.E.Hobart
Thomas Hobbes
David Hodgson
Shadsworth Hodgson
Baron d'Holbach
Ted Honderich
Pamela Huby
David Hume
Ferenc Huoranszki
Frank Jackson
William James
Lord Kames
Robert Kane
Immanuel Kant
Tomis Kapitan
Walter Kaufmann
Jaegwon Kim
William King
Hilary Kornblith
Christine Korsgaard
Saul Kripke
Thomas Kuhn
Andrea Lavazza
Christoph Lehner
Keith Lehrer
Gottfried Leibniz
Jules Lequyer
Leucippus
Michael Levin
Joseph Levine
George Henry Lewes
C.I.Lewis
David Lewis
Peter Lipton
C. Lloyd Morgan
John Locke
Michael Lockwood
Arthur O. Lovejoy
E. Jonathan Lowe
John R. Lucas
Lucretius
Alasdair MacIntyre
Ruth Barcan Marcus
Tim Maudlin
James Martineau
Nicholas Maxwell
Storrs McCall
Hugh McCann
Colin McGinn
Michael McKenna
Brian McLaughlin
John McTaggart
Paul E. Meehl
Uwe Meixner
Alfred Mele
Trenton Merricks
John Stuart Mill
Dickinson Miller
G.E.Moore
Thomas Nagel
Otto Neurath
Friedrich Nietzsche
John Norton
P.H.Nowell-Smith
Robert Nozick
William of Ockham
Timothy O'Connor
Parmenides
David F. Pears
Charles Sanders Peirce
Derk Pereboom
Steven Pinker
U.T.Place
Plato
Karl Popper
Porphyry
Huw Price
H.A.Prichard
Protagoras
Hilary Putnam
Willard van Orman Quine
Frank Ramsey
Ayn Rand
Michael Rea
Thomas Reid
Charles Renouvier
Nicholas Rescher
C.W.Rietdijk
Richard Rorty
Josiah Royce
Bertrand Russell
Paul Russell
Gilbert Ryle
Jean-Paul Sartre
Kenneth Sayre
T.M.Scanlon
Moritz Schlick
John Duns Scotus
Arthur Schopenhauer
John Searle
Wilfrid Sellars
David Shiang
Alan Sidelle
Ted Sider
Henry Sidgwick
Walter Sinnott-Armstrong
Peter Slezak
J.J.C.Smart
Saul Smilansky
Michael Smith
Baruch Spinoza
L. Susan Stebbing
Isabelle Stengers
George F. Stout
Galen Strawson
Peter Strawson
Eleonore Stump
Francisco Suárez
Richard Taylor
Kevin Timpe
Mark Twain
Peter Unger
Peter van Inwagen
Manuel Vargas
John Venn
Kadri Vihvelin
Voltaire
G.H. von Wright
David Foster Wallace
R. Jay Wallace
W.G.Ward
Ted Warfield
Roy Weatherford
C.F. von Weizsäcker
William Whewell
Alfred North Whitehead
David Widerker
David Wiggins
Bernard Williams
Timothy Williamson
Ludwig Wittgenstein
Susan Wolf

Scientists

David Albert
Michael Arbib
Walter Baade
Bernard Baars
Jeffrey Bada
Leslie Ballentine
Marcello Barbieri
Gregory Bateson
Horace Barlow
John S. Bell
Mara Beller
Charles Bennett
Ludwig von Bertalanffy
Susan Blackmore
Margaret Boden
David Bohm
Niels Bohr
Ludwig Boltzmann
Emile Borel
Max Born
Satyendra Nath Bose
Walther Bothe
Jean Bricmont
Hans Briegel
Leon Brillouin
Stephen Brush
Henry Thomas Buckle
S. H. Burbury
Melvin Calvin
Donald Campbell
Sadi Carnot
Anthony Cashmore
Eric Chaisson
Gregory Chaitin
Jean-Pierre Changeux
Rudolf Clausius
Arthur Holly Compton
John Conway
Jerry Coyne
John Cramer
Francis Crick
E. P. Culverwell
Antonio Damasio
Olivier Darrigol
Charles Darwin
Richard Dawkins
Terrence Deacon
Lüder Deecke
Richard Dedekind
Louis de Broglie
Stanislas Dehaene
Max Delbrück
Abraham de Moivre
Bernard d'Espagnat
Paul Dirac
Hans Driesch
John Eccles
Arthur Stanley Eddington
Gerald Edelman
Paul Ehrenfest
Manfred Eigen
Albert Einstein
George F. R. Ellis
Hugh Everett, III
Franz Exner
Richard Feynman
R. A. Fisher
David Foster
Joseph Fourier
Philipp Frank
Steven Frautschi
Edward Fredkin
Benjamin Gal-Or
Howard Gardner
Lila Gatlin
Michael Gazzaniga
Nicholas Georgescu-Roegen
GianCarlo Ghirardi
J. Willard Gibbs
James J. Gibson
Nicolas Gisin
Paul Glimcher
Thomas Gold
A. O. Gomes
Brian Goodwin
Joshua Greene
Dirk ter Haar
Jacques Hadamard
Mark Hadley
Patrick Haggard
J. B. S. Haldane
Stuart Hameroff
Augustin Hamon
Sam Harris
Ralph Hartley
Hyman Hartman
Jeff Hawkins
John-Dylan Haynes
Donald Hebb
Martin Heisenberg
Werner Heisenberg
John Herschel
Basil Hiley
Art Hobson
Jesper Hoffmeyer
Don Howard
John H. Jackson
William Stanley Jevons
Roman Jakobson
E. T. Jaynes
Pascual Jordan
Eric Kandel
Ruth E. Kastner
Stuart Kauffman
Martin J. Klein
William R. Klemm
Christof Koch
Simon Kochen
Hans Kornhuber
Stephen Kosslyn
Daniel Koshland
Ladislav Kovàč
Leopold Kronecker
Rolf Landauer
Alfred Landé
Pierre-Simon Laplace
Karl Lashley
David Layzer
Joseph LeDoux
Gerald Lettvin
Gilbert Lewis
Benjamin Libet
David Lindley
Seth Lloyd
Werner Loewenstein
Hendrik Lorentz
Josef Loschmidt
Alfred Lotka
Ernst Mach
Donald MacKay
Henry Margenau
Owen Maroney
David Marr
Humberto Maturana
James Clerk Maxwell
Ernst Mayr
John McCarthy
Warren McCulloch
N. David Mermin
George Miller
Stanley Miller
Ulrich Mohrhoff
Jacques Monod
Vernon Mountcastle
Emmy Noether
Donald Norman
Alexander Oparin
Abraham Pais
Howard Pattee
Wolfgang Pauli
Massimo Pauri
Wilder Penfield
Roger Penrose
Steven Pinker
Colin Pittendrigh
Walter Pitts
Max Planck
Susan Pockett
Henri Poincaré
Daniel Pollen
Ilya Prigogine
Hans Primas
Zenon Pylyshyn
Henry Quastler
Adolphe Quételet
Pasco Rakic
Nicolas Rashevsky
Lord Rayleigh
Frederick Reif
Jürgen Renn
Giacomo Rizzolati
A.A. Roback
Emil Roduner
Juan Roederer
Jerome Rothstein
David Ruelle
David Rumelhart
Robert Sapolsky
Tilman Sauer
Ferdinand de Saussure
Jürgen Schmidhuber
Erwin Schrödinger
Aaron Schurger
Sebastian Seung
Thomas Sebeok
Franco Selleri
Claude Shannon
Charles Sherrington
Abner Shimony
Herbert Simon
Dean Keith Simonton
Edmund Sinnott
B. F. Skinner
Lee Smolin
Ray Solomonoff
Roger Sperry
John Stachel
Henry Stapp
Tom Stonier
Antoine Suarez
Leo Szilard
Max Tegmark
Teilhard de Chardin
Libb Thims
William Thomson (Kelvin)
Richard Tolman
Giulio Tononi
Peter Tse
Alan Turing
C. S. Unnikrishnan
Francisco Varela
Vlatko Vedral
Vladimir Vernadsky
Mikhail Volkenstein
Heinz von Foerster
Richard von Mises
John von Neumann
Jakob von Uexküll
C. H. Waddington
John B. Watson
Daniel Wegner
Steven Weinberg
Paul A. Weiss
Herman Weyl
John Wheeler
Jeffrey Wicken
Wilhelm Wien
Norbert Wiener
Eugene Wigner
E. O. Wilson
Günther Witzany
Stephen Wolfram
H. Dieter Zeh
Semir Zeki
Ernst Zermelo
Wojciech Zurek
Konrad Zuse
Fritz Zwicky

Presentations

Biosemiotics
Free Will
Mental Causation
James Symposium
 
Louis de Broglie

Louis de Broglie was a critical link between the work of Albert Einstein and Max Born's statistical interpretation of quantum mechanics. But a quarter-century later, de Broglie's ideas were revived and re-interpreted by David Bohm as faster-than-light potentials and forces at a deeper level of reality than indeterministic quantum mechanics. Bohm saw these superluminal forces as instantaneous connections between all the particles of a "holistic" and deterministic universe.

It was de Broglie who first argued that if light, which was thought to consist of continuous waves, is actually discrete particles (which Einstein called light quanta in 1905, later called photons), then matter, which is known to consist of discrete particles, might also have a continuous wave nature. Einstein enthusiastically endorsed d Broglie's view.

The fundamental idea of [my 1924 thesis] was the following: The fact that, following Einstein's introduction of photons in light waves, one knew that light contains particles which are concentrations of energy incorporated into the wave, suggests that all particles, like the electron, must be transported by a wave into which it is incorporated... My essential idea was to extend to all particles the coexistence of waves and particles discovered by Einstein in 1905 in the case of light and photons."

De Broglie called the light wave "transporting" the photon a "pilot wave," where Einstein had called it a "ghost field" or "guiding field," without attributing any controlling energy, force, or impulse to the field.

Einstein said that the light wave at some position is a measure of the probability of finding a light particle there, that is, the intensity of the light wave is proportional to the number of photons there. It may have been implicit in his 1905 light quantum hypothesis, as de Broglie seems to think.

Although Einstein had described "ghost" and "guiding" fields to colleagues as early as 1921, we don't have specific quotes from Einstein until 1927 at the fifth Solvay conference, where he explains it in terms of the absolute square of Erwin Schrödinger's new wave function ψ.

|ψ|2 expresses the probability that there exists at the point considered a particular particle of the cloud, for example at a given point on the screen.

Schrödinger violently disagreed with Einstein's probabilities and his statistical interpretation of the wave function, which became a part of Niels Bohr and Werner Heisenberg Copenhagen interpretation of quantum mechanics. For Schrödinger, the light wave was distributed energy, and for matter particles like the electron, his wave function was distributed matter and charge. Einstein too became disillusioned with his own discovery of chance and the statistical basis of quantum mechanics, the most famous critic of quantum mechanics for the rest of hia life.

Over a year earlier than the Solvay conference, in July of 1926, Max Born used de Broglie's matter waves, as described by Schrödinger's wave equation, to quantify the interpretation of the wave as the probability of finding an electron going off in a specific collision direction as proportional to the square of the probability amplitude wave function in that direction. Born gave full credit to Einstein, de Broglie, and Schrödinger for the idea, although the "statistical interpretation" and the role of chance itself is pure Einstein.

Born wrote in 1926...

Collision processes not only yield the most convincing experimental proof of the basic assumptions of quantum theory, but also seem suitable for explaining the physical meaning of the formal laws of the so-called “quantum mechanics.”
A year before the introduction of Werner Heisenberg's uncertainty principle and the "orthodox" Copenhagen Interpretation, Born already sees there are multiple interpretations of quantum mechanics
Indeed, as it seems, it always produces the correct term values of the stationary states and the correct amplitudes for the oscillations that are radiated by the transitions, but opinions are divided regarding the physical interpretation of the formulas. The matrix form of quantum mechanics that was founded by Heisenberg and developed by him and the author of this article starts from the thought that an exact representation of processes in space and time is quite impossible and that one must then content oneself with presenting the relations between the observed quantities, which can only be interpreted as properties of the motions in the limiting classical cases. On the other hand, Schrödinger (3) seems to have ascribed a reality of the same kind that light waves possessed to the waves that he regards as the carriers of atomic processes by using the de Broglie procedure; he attempts “to construct wave packets that have relatively small dimensions in all directions,” and which can obviously represent the moving corpuscle directly.

Here Born offers a third, "statistical" interpretation of quantum mechanics, and he gives credit to Einstein for the relation between waves and particles.

Einstein had described the intensity of a continuous light wave as proportional to the probability of discrete light quanta being found there. He called the light wave a "ghost field" (Gespensterfeld) or a "guiding field (Führungfeld).

Neither of these viewpoints seems satisfactory to me. Here, I would like to try to give a third interpretation and probe its utility in collision processes.

I shall recall a remark that Einstein made about the behavior of the wave field and light quanta. He said that perhaps the waves only have to be wherever one needs to know the path of the corpuscular light quanta, and in that sense, he spoke of a “ghost field.” It determines the probability that a light quantum - viz., the carrier of energy and impulse – follows a certain path; however, the field itself is ascribed no energy and no impulse.

One would do better to postpone these thoughts, when coupled directly to quantum mechanics, until the place of the electromagnetic field in the formalism has been established. However, from the complete analogy between light quanta and electrons, one might consider formulating the laws of electron motion in a similar manner. This is closely related to regarding the de Broglie-Schrödinger waves as “ghost fields,” or better yet, “guiding fields.”

I would then like to pursue the following idea heuristically: The guiding field, which is represented by a scalar function ψ of the coordinates of all particles that are involved and time, propagates according to Schrödinger’s differential equation. However, impulse and energy will be carried along as when corpuscles (i.e., electrons) are actually flying around. The paths of these corpuscles are determined only to the extent that they are constrained by the law of energy and impulse; moreover, only a probability that a certain path will be followed will be determined by the function ψ. One can perhaps summarize this, somewhat paradoxically, as: The motion of the particle follows the laws of probability, but the probability itself propagates in accord with causal laws.

DeBroglie-Bohm
In two papers written in 1952 David Bohm proposed to reconsider de Broglie's idea of "hidden variables" as an explanation of the Einstein-Podolsky-Rosen Paradox. A few years later, Bohm and his student Yahir Aharonov designed a new version of the EPR experiment based on entangled electrons.

That same year, Bohm wrote his classic book Causality and Chance in Modern Physics, and de Broglie wrote a preface, in which he hoped Bohm could discover a deeper level deterministic physics, which would explain and replace the probabilistic and statistical properties of quantum mechanics seen by Einstein, Heisenberg, Born, and Dirac.

De Broglie wrote...

A long time ago in an article in the Journal de Physique of May 1927 I put forward a causal explanation of wave mechanics which I called the "theory of double solutions" but I abandoned it, discouraged by criticisms which this attempt roused. In his 1952 paper Professor Bohm has taken up certain ideas from this article and commenting and enlarging on them in a most interesting way he has successfully developed important arguments in favour of a causal reinterpretation of quantum physics. Professor Bohm's paper has led me to take my old concepts up again, and with my young colleagues at the Institute Henri Poincaré, and in particular M. Jean-Pierre Vigier, we have been able to obtain certain encouraging results. M. Vigier working with Professor Bohm himself has developed an interesting interpretation of the statistical significance of |ψ|2 in wave mechanics...

Professor Bohm...has shrewdly and carefully analyzed the idea of chance and has shown that it comes in at each stage in the progress of our knowledge, when we are not aware that we are at the brink of a deeper level of reality, which still eludes us. Convinced that theoretical physics has always led, and will always led, to the discovery of deeper and deeper levels of the physical world, and that this process will continue without any limit, he has concluded that quantum physics has no right to consider its present concepts definitive, and that it cannot stop researchers imagining deeper domains of reality than those which it has already explored.

For Teachers
For Scholars

Chapter 1.5 - The Philosophers Chapter 2.1 - The Problem of Knowledge
Home Part Two - Knowledge
Normal | Teacher | Scholar