Philosophers
Mortimer Adler Rogers Albritton Alexander of Aphrodisias Samuel Alexander William Alston Anaximander G.E.M.Anscombe Anselm Louise Antony Thomas Aquinas Aristotle David Armstrong Harald Atmanspacher Robert Audi Augustine J.L.Austin A.J.Ayer Alexander Bain Mark Balaguer Jeffrey Barrett William Barrett William Belsham Henri Bergson George Berkeley Isaiah Berlin Richard J. Bernstein Bernard Berofsky Robert Bishop Max Black Susanne Bobzien Emil du Bois-Reymond Hilary Bok Laurence BonJour George Boole Émile Boutroux Daniel Boyd F.H.Bradley C.D.Broad Michael Burke Jeremy Butterfield Lawrence Cahoone C.A.Campbell Joseph Keim Campbell Rudolf Carnap Carneades Nancy Cartwright Gregg Caruso Ernst Cassirer David Chalmers Roderick Chisholm Chrysippus Cicero Tom Clark Randolph Clarke Samuel Clarke Anthony Collins Antonella Corradini Diodorus Cronus Jonathan Dancy Donald Davidson Mario De Caro Democritus Daniel Dennett Jacques Derrida René Descartes Richard Double Fred Dretske John Dupré John Earman Laura Waddell Ekstrom Epictetus Epicurus Austin Farrer Herbert Feigl Arthur Fine John Martin Fischer Frederic Fitch Owen Flanagan Luciano Floridi Philippa Foot Alfred Fouilleé Harry Frankfurt Richard L. Franklin Bas van Fraassen Michael Frede Gottlob Frege Peter Geach Edmund Gettier Carl Ginet Alvin Goldman Gorgias Nicholas St. John Green H.Paul Grice Ian Hacking Ishtiyaque Haji Stuart Hampshire W.F.R.Hardie Sam Harris William Hasker R.M.Hare Georg W.F. Hegel Martin Heidegger Heraclitus R.E.Hobart Thomas Hobbes David Hodgson Shadsworth Hodgson Baron d'Holbach Ted Honderich Pamela Huby David Hume Ferenc Huoranszki Frank Jackson William James Lord Kames Robert Kane Immanuel Kant Tomis Kapitan Walter Kaufmann Jaegwon Kim William King Hilary Kornblith Christine Korsgaard Saul Kripke Thomas Kuhn Andrea Lavazza Christoph Lehner Keith Lehrer Gottfried Leibniz Jules Lequyer Leucippus Michael Levin Joseph Levine George Henry Lewes C.I.Lewis David Lewis Peter Lipton C. Lloyd Morgan John Locke Michael Lockwood Arthur O. Lovejoy E. Jonathan Lowe John R. Lucas Lucretius Alasdair MacIntyre Ruth Barcan Marcus Tim Maudlin James Martineau Nicholas Maxwell Storrs McCall Hugh McCann Colin McGinn Michael McKenna Brian McLaughlin John McTaggart Paul E. Meehl Uwe Meixner Alfred Mele Trenton Merricks John Stuart Mill Dickinson Miller G.E.Moore Thomas Nagel Otto Neurath Friedrich Nietzsche John Norton P.H.Nowell-Smith Robert Nozick William of Ockham Timothy O'Connor Parmenides David F. Pears Charles Sanders Peirce Derk Pereboom Steven Pinker U.T.Place Plato Karl Popper Porphyry Huw Price H.A.Prichard Protagoras Hilary Putnam Willard van Orman Quine Frank Ramsey Ayn Rand Michael Rea Thomas Reid Charles Renouvier Nicholas Rescher C.W.Rietdijk Richard Rorty Josiah Royce Bertrand Russell Paul Russell Gilbert Ryle Jean-Paul Sartre Kenneth Sayre T.M.Scanlon Moritz Schlick John Duns Scotus Arthur Schopenhauer John Searle Wilfrid Sellars David Shiang Alan Sidelle Ted Sider Henry Sidgwick Walter Sinnott-Armstrong Peter Slezak J.J.C.Smart Saul Smilansky Michael Smith Baruch Spinoza L. Susan Stebbing Isabelle Stengers George F. Stout Galen Strawson Peter Strawson Eleonore Stump Francisco Suárez Richard Taylor Kevin Timpe Mark Twain Peter Unger Peter van Inwagen Manuel Vargas John Venn Kadri Vihvelin Voltaire G.H. von Wright David Foster Wallace R. Jay Wallace W.G.Ward Ted Warfield Roy Weatherford C.F. von Weizsäcker William Whewell Alfred North Whitehead David Widerker David Wiggins Bernard Williams Timothy Williamson Ludwig Wittgenstein Susan Wolf Scientists David Albert Michael Arbib Walter Baade Bernard Baars Jeffrey Bada Leslie Ballentine Marcello Barbieri Gregory Bateson Horace Barlow John S. Bell Mara Beller Charles Bennett Ludwig von Bertalanffy Susan Blackmore Margaret Boden David Bohm Niels Bohr Ludwig Boltzmann Emile Borel Max Born Satyendra Nath Bose Walther Bothe Jean Bricmont Hans Briegel Leon Brillouin Stephen Brush Henry Thomas Buckle S. H. Burbury Melvin Calvin Donald Campbell Sadi Carnot Anthony Cashmore Eric Chaisson Gregory Chaitin Jean-Pierre Changeux Rudolf Clausius Arthur Holly Compton John Conway Jerry Coyne John Cramer Francis Crick E. P. Culverwell Antonio Damasio Olivier Darrigol Charles Darwin Richard Dawkins Terrence Deacon Lüder Deecke Richard Dedekind Louis de Broglie Stanislas Dehaene Max Delbrück Abraham de Moivre Bernard d'Espagnat Paul Dirac Hans Driesch John Eccles Arthur Stanley Eddington Gerald Edelman Paul Ehrenfest Manfred Eigen Albert Einstein George F. R. Ellis Hugh Everett, III Franz Exner Richard Feynman R. A. Fisher David Foster Joseph Fourier Philipp Frank Steven Frautschi Edward Fredkin Augustin-Jean Fresnel Benjamin Gal-Or Howard Gardner Lila Gatlin Michael Gazzaniga Nicholas Georgescu-Roegen GianCarlo Ghirardi J. Willard Gibbs James J. Gibson Nicolas Gisin Paul Glimcher Thomas Gold A. O. Gomes Brian Goodwin Joshua Greene Dirk ter Haar Jacques Hadamard Mark Hadley Patrick Haggard J. B. S. Haldane Stuart Hameroff Augustin Hamon Sam Harris Ralph Hartley Hyman Hartman Jeff Hawkins John-Dylan Haynes Donald Hebb Martin Heisenberg Werner Heisenberg John Herschel Basil Hiley Art Hobson Jesper Hoffmeyer Don Howard John H. Jackson William Stanley Jevons Roman Jakobson E. T. Jaynes Pascual Jordan Eric Kandel Ruth E. Kastner Stuart Kauffman Martin J. Klein William R. Klemm Christof Koch Simon Kochen Hans Kornhuber Stephen Kosslyn Daniel Koshland Ladislav Kovàč Leopold Kronecker Rolf Landauer Alfred Landé Pierre-Simon Laplace Karl Lashley David Layzer Joseph LeDoux Gerald Lettvin Gilbert Lewis Benjamin Libet David Lindley Seth Lloyd Werner Loewenstein Hendrik Lorentz Josef Loschmidt Alfred Lotka Ernst Mach Donald MacKay Henry Margenau Owen Maroney David Marr Humberto Maturana James Clerk Maxwell Ernst Mayr John McCarthy Warren McCulloch N. David Mermin George Miller Stanley Miller Ulrich Mohrhoff Jacques Monod Vernon Mountcastle Emmy Noether Donald Norman Travis Norsen Alexander Oparin Abraham Pais Howard Pattee Wolfgang Pauli Massimo Pauri Wilder Penfield Roger Penrose Steven Pinker Colin Pittendrigh Walter Pitts Max Planck Susan Pockett Henri Poincaré Daniel Pollen Ilya Prigogine Hans Primas Zenon Pylyshyn Henry Quastler Adolphe Quételet Pasco Rakic Nicolas Rashevsky Lord Rayleigh Frederick Reif Jürgen Renn Giacomo Rizzolati A.A. Roback Emil Roduner Juan Roederer Jerome Rothstein David Ruelle David Rumelhart Robert Sapolsky Tilman Sauer Ferdinand de Saussure Jürgen Schmidhuber Erwin Schrödinger Aaron Schurger Sebastian Seung Thomas Sebeok Franco Selleri Claude Shannon Charles Sherrington Abner Shimony Herbert Simon Dean Keith Simonton Edmund Sinnott B. F. Skinner Lee Smolin Ray Solomonoff Roger Sperry John Stachel Henry Stapp Tom Stonier Antoine Suarez Leo Szilard Max Tegmark Teilhard de Chardin Libb Thims William Thomson (Kelvin) Richard Tolman Giulio Tononi Peter Tse Alan Turing C. S. Unnikrishnan Francisco Varela Vlatko Vedral Vladimir Vernadsky Mikhail Volkenstein Heinz von Foerster Richard von Mises John von Neumann Jakob von Uexküll C. H. Waddington John B. Watson Daniel Wegner Steven Weinberg Paul A. Weiss Herman Weyl John Wheeler Jeffrey Wicken Wilhelm Wien Norbert Wiener Eugene Wigner E. O. Wilson Günther Witzany Stephen Wolfram H. Dieter Zeh Semir Zeki Ernst Zermelo Wojciech Zurek Konrad Zuse Fritz Zwicky Presentations Biosemiotics Free Will Mental Causation James Symposium |
Peter U. Tse
Peter U. Tse is a cognitive psychologist and neuroscientist at Dartmouth who argues for a novel form of mental causation that he calls "criterial causation."
The idea is that large numbers of neurons (a complex of cells or "cell assembly") are likely to be involved in even the simplest thoughts and actions. Tse argues that the brain may be able to modify dynamically the probabilities that individual neurons are "firing." He calls this "dynamical synaptic reweighting."
Since the process by which a pre-synaptic neuron releases chemical neurotransmitters into the synaptic cleft is a statistical one (large numbers of neurotransmitter molecules must diffuse across the cleft to activate ion channel receptors on the post-synaptic neuron), Tse says that there is some ontological randomness in the process. He argues that this is real "ontological" indeterministic chance, quantum mechanical in origin.
How exactly such weights or probabilities of firing might work is not understood, but Tse argues that weights would constitute "informational" criteria as opposed to being simply physical. They could represent mental events that supervene on the physical brain events.
Tse accepts the Basic Argument of philosopher Galen Strawson, that we are not free to change the way we are at any moment, that we cannot be "causa sui." But since ontological randomness can dynamically reassign weights to the synapses, we can change mental events in the future. He says:
The central argument against the possibility of free will rests on the impossibility of self-causation. [Strawson's] basic argument does not follow, given a degree of randomness in neural spike timing and given neural criterial causation, as follows: Physically realized mental events can change the physical basis not of themselves in the present, but of future mental events. How? By triggering changes in the physically realized informational/physical criteria for firing that must be met by future neuronal inputs before future neuronal firing occurs that realizes future mental events. Such criterial causation does not involve self-causation.Tse describes the requirements for a "strong" free will that resembles the requirements for two-stage models of free will, but he does not think of criterial causation as a two-stage model. In order to have a free will in the strong sense, there must be (a) multiple courses of physical or mental behavior open to us, (b) we must really be able to choose among them, (c) we must be or must have been able to have chosen otherwise once we have chosen, and (d) the choice must not be dictated by randomness alone, but by us. A strong conception of free will is not compatible with either predetermined or random choices because in neither case do we decide which alternative to actualize from among many that might have been selected. Criterial causation gets around the causa sui argument against both mental causation and free will by having neurons alter the physical grounds, not of present mental events, but of future mental events. Self-causation only applies to changing the physical basis of making a present decision that is realized in or supervenes on that very same physical basis. Self-causation does not apply to changing the physical basis of making a future decision. While there can obviously never be a self-caused event, criteria can be set up in advance, such that when they are met, an action automatically follows; this is an action that we will have willed to take place by virtue of having set up those particular criteria in advance. At the moment those criteria are satisfied at some unknown point in the future, leading to some action or choice, those criteria cannot be changed, but because criteria can be changed in advance, we are free to determine how we will behave within certain limits in the near future. Criterial causation therefore offers a path toward free will where a brain can determine how it will behave given particular types of future input. This can be milliseconds in the future or, in some cases, even years away. Assuming indeterminism, criterial outcome is an outcome that meets certain preset criteria, but what that outcome will be is not foreseeable, and had we run the sequence of events over from the same initial conditions, with the same criteria, we may have ended up with a different outcome, because of noise in the system. Criterial causality therefore leaves room for non-illusory choice that is a middle path between the extremes of (a) determinism, where there is no ability to choose freely in the strong sense because there is never the possibility of an alternative action, and (b) criteria-less indeterminism, where arbitrary choices follow from randomness rather than from criteria one sets up oneself. Free will skeptics might counter that the setting up of any set of criteria to be met by future inputs is itself determined by preexisting sets of criteria that have been met. This is in fact correct. The key point is that criteria will be met in unpredictable ways if there is inherent variability or noise in inputs, such as can be introduced by the randomness inherent in neurotransmitter molecules crossing the synapse. Just because new criteria are set up by a nervous system in a manner dictated by the satisfaction of preexisting criteria does not mean that either the future or present criteria will be met in a predetermined manner. Moreover, because our neurons set criteria for the firing of other neurons in response to their future input, the choices realized in the satisfying of those criteria are our own choices. Ontological indeterminism and neuronal criterial causation permits a physical causal basis for a strong free will.Tse compares his work to traditional two-stage models, but thinks of his criterial causation as having three stages: The present view is a type of incompatibilist physicalist libertarianism. Its closest relatives are found in Jamesian two-stage models of free will, where a first stage alternative possibilities for action or thought are generated in part randomly, and in a second, subsequent stage, an adequately determined volitional mechanism, where chance is no longer a factor, evaluates and selects the optimal option. James, Popper and others viewed the process as akin to a Darwinian two stage process, where indeterminism in the microscopic domain at the level of genetic reshuffling and mutation is amplified into variability at the level of animal traits, which is then selected among via natural and sexual selection. James and his followers have described the first process as one in which multiple alternative ideas or plans for action are generated in part randomly, and the second stage as one where a will or rational faculty selects from among these possibilities. The present view differs from the traditional Jamesian view in that multiple ideas are not generated, and the selecting faculty is not rational and is not the will, but is instead a postsynaptic neuron. That is, instead of modeling possibility generation and selection at the level of ideas, here the focus is on what happens at the neuronal level. The present view might more profitably be thought of as a three stage model, where (1) in the first stage new physical/informational criteria are set in a neuron or neuronal circuit on the basis of preceding physical/mental processing, including volitional processing, and (2) in the second, later stage inherently variable and therefore indeterministic presynaptic inputs arrive at the post-synaptic neuron, and (3) in the third, later stage physical/informational criteria are met or not met, leading to post-synaptic neural firing or not. Randomness can enter at stage (1)’s resetting of synaptic weights, or in (2)’s presynaptic inputs, but in (3) the threshold for firing is met or not met. A central argument against the logical possibility of either mental causation or free will has been the impossibility of self-causation: Because mental events, including acts of willing, are realized in or supervene on physical events, they cannot alter the physical events in which they are presently realized or on which they supervene. The central thesis argued here is that physically realized mental events can change the physical basis of future mental events by triggering changes in the physical/informational criteria that must be met by future presynaptic inputs before future neuronal firing occurs. While this process of dynamic resetting of synaptic weights (= resetting of physical/informational criteria for firing) could operate deterministically, if neural processes can amplify were indeterministic, then criteria could be met non-deterministically. Assuming ontological indeterminism, criterial causation permits downward mental causation and free will because neurons can set up criteria for future action potential release which, once satisfied, lead to non-determined, yet self-selected future actions that harness inherent variability in neuronal responses to generate novel solutions that meet the criteria that were set.Tse believes that neuroscience has been biased by a kind of dogma about neuronal causation that has hampered understanding of mental causation. That traditional view has been that neuronal causation is tantamount to action potentials triggering action potentials. But that is only half the story. The other half is that an action potential can 'rewire' the synaptic weights on a post-synaptic cell without necessarily making it fire. This effectively changes both the connectivity of a neuron in the sense that different inputs might now make it fire than before rapid synaptic resetting, and it potentially changes the informational criteria that must now be met to make the post-synaptic neuron fire.
The Neural Basis of Free Will
In March 2013, MIT Press published Tse's book, The Neural Basis of Free Will: Criterial Causation. In it he argues that criterial causation provides a model for getting around both Galen Strawson's Basic Argument against free will and Jaegwon Kim's logical argument against a non-reductive physicalism and the possibility of mental causation.
Tse defines four "very high demands" of a "strong conception of free will"
I argue that it is possible to be a physicalist and ontological indeterminist and adhere to a strong conception of free will. A strong free will requires meeting some very high demands. We must have (a) multiple courses of physical or mental behavior open to us; (b) we must really be able to choose among them; (c) we must be or must have been able to have chosen otherwise once we have chosen a course of behavior; and (d) the choice must not be dictated by randomness alone, but by us. This seems like an impossible bill to fill, since it seems to require that acts of free will involve acts of self-causation. The goal of this chapter is to describe a way to meet these demands, assuming ontological indeterminism and criterial causation among neurons, that does not fall into the logical fallacy of self-causation.We agree with Tse, and can add some comments and specifics to each of his four demands.
It separates the "free" stage of generating possibilities (t1) from the evaluation (t2) and selection "will" stage (t3).
Tse on Creativity
Tse is correct that ontological indeterminism (in the form of "noise" in the neural system) is a critical ingredient of both free will and creativity. Tse's description of the creative process appears to be in two stages, the first indeterministic and the second adequately determined and "up to us." He describes the process going on when Mozart composes his music.
Any criterial outcome will meet the criteria preset by a given brain and so will be an outcome that is satisfactory to that brain and caused by that brain, but it will also not be a unique solution predetermined by that brain or coerced upon that brain by external forces. Imagine, for example, Mozart trying to generate a musical sequence that sounds happy. Some part of his brain, perhaps a working-memory area like the dorsal lateral prefrontal cortex, defines criteria that a melody would have to meet in order to sound happy. Various cascades of criterial satisfaction are met that result in possible sequences that might meet the happiness criteria.
Tse's BBC Videos
The Strange Idea That We Are Not in Control of Our Minds
The Physics That Suggests Our Future Is Set in Stone
What's the Point of Having Free Will?
For Teachers
For Scholars
|