Philosophers
Mortimer Adler Rogers Albritton Alexander of Aphrodisias Samuel Alexander William Alston Anaximander G.E.M.Anscombe Anselm Louise Antony Thomas Aquinas Aristotle David Armstrong Harald Atmanspacher Robert Audi Augustine J.L.Austin A.J.Ayer Alexander Bain Mark Balaguer Jeffrey Barrett William Barrett William Belsham Henri Bergson George Berkeley Isaiah Berlin Richard J. Bernstein Bernard Berofsky Robert Bishop Max Black Susanne Bobzien Emil du Bois-Reymond Hilary Bok Laurence BonJour George Boole Émile Boutroux Daniel Boyd F.H.Bradley C.D.Broad Michael Burke Lawrence Cahoone C.A.Campbell Joseph Keim Campbell Rudolf Carnap Carneades Nancy Cartwright Gregg Caruso Ernst Cassirer David Chalmers Roderick Chisholm Chrysippus Cicero Tom Clark Randolph Clarke Samuel Clarke Anthony Collins Antonella Corradini Diodorus Cronus Jonathan Dancy Donald Davidson Mario De Caro Democritus Daniel Dennett Jacques Derrida René Descartes Richard Double Fred Dretske John Dupré John Earman Laura Waddell Ekstrom Epictetus Epicurus Austin Farrer Herbert Feigl Arthur Fine John Martin Fischer Frederic Fitch Owen Flanagan Luciano Floridi Philippa Foot Alfred Fouilleé Harry Frankfurt Richard L. Franklin Bas van Fraassen Michael Frede Gottlob Frege Peter Geach Edmund Gettier Carl Ginet Alvin Goldman Gorgias Nicholas St. John Green H.Paul Grice Ian Hacking Ishtiyaque Haji Stuart Hampshire W.F.R.Hardie Sam Harris William Hasker R.M.Hare Georg W.F. Hegel Martin Heidegger Heraclitus R.E.Hobart Thomas Hobbes David Hodgson Shadsworth Hodgson Baron d'Holbach Ted Honderich Pamela Huby David Hume Ferenc Huoranszki Frank Jackson William James Lord Kames Robert Kane Immanuel Kant Tomis Kapitan Walter Kaufmann Jaegwon Kim William King Hilary Kornblith Christine Korsgaard Saul Kripke Thomas Kuhn Andrea Lavazza Christoph Lehner Keith Lehrer Gottfried Leibniz Jules Lequyer Leucippus Michael Levin Joseph Levine George Henry Lewes C.I.Lewis David Lewis Peter Lipton C. Lloyd Morgan John Locke Michael Lockwood Arthur O. Lovejoy E. Jonathan Lowe John R. Lucas Lucretius Alasdair MacIntyre Ruth Barcan Marcus Tim Maudlin James Martineau Nicholas Maxwell Storrs McCall Hugh McCann Colin McGinn Michael McKenna Brian McLaughlin John McTaggart Paul E. Meehl Uwe Meixner Alfred Mele Trenton Merricks John Stuart Mill Dickinson Miller G.E.Moore Thomas Nagel Otto Neurath Friedrich Nietzsche John Norton P.H.Nowell-Smith Robert Nozick William of Ockham Timothy O'Connor Parmenides David F. Pears Charles Sanders Peirce Derk Pereboom Steven Pinker U.T.Place Plato Karl Popper Porphyry Huw Price H.A.Prichard Protagoras Hilary Putnam Willard van Orman Quine Frank Ramsey Ayn Rand Michael Rea Thomas Reid Charles Renouvier Nicholas Rescher C.W.Rietdijk Richard Rorty Josiah Royce Bertrand Russell Paul Russell Gilbert Ryle Jean-Paul Sartre Kenneth Sayre T.M.Scanlon Moritz Schlick John Duns Scotus Arthur Schopenhauer John Searle Wilfrid Sellars David Shiang Alan Sidelle Ted Sider Henry Sidgwick Walter Sinnott-Armstrong Peter Slezak J.J.C.Smart Saul Smilansky Michael Smith Baruch Spinoza L. Susan Stebbing Isabelle Stengers George F. Stout Galen Strawson Peter Strawson Eleonore Stump Francisco Suárez Richard Taylor Kevin Timpe Mark Twain Peter Unger Peter van Inwagen Manuel Vargas John Venn Kadri Vihvelin Voltaire G.H. von Wright David Foster Wallace R. Jay Wallace W.G.Ward Ted Warfield Roy Weatherford C.F. von Weizsäcker William Whewell Alfred North Whitehead David Widerker David Wiggins Bernard Williams Timothy Williamson Ludwig Wittgenstein Susan Wolf Scientists David Albert Michael Arbib Walter Baade Bernard Baars Jeffrey Bada Leslie Ballentine Marcello Barbieri Gregory Bateson Horace Barlow John S. Bell Mara Beller Charles Bennett Ludwig von Bertalanffy Susan Blackmore Margaret Boden David Bohm Niels Bohr Ludwig Boltzmann Emile Borel Max Born Satyendra Nath Bose Walther Bothe Jean Bricmont Hans Briegel Leon Brillouin Stephen Brush Henry Thomas Buckle S. H. Burbury Melvin Calvin Donald Campbell Sadi Carnot Anthony Cashmore Eric Chaisson Gregory Chaitin Jean-Pierre Changeux Rudolf Clausius Arthur Holly Compton John Conway Jerry Coyne John Cramer Francis Crick E. P. Culverwell Antonio Damasio Olivier Darrigol Charles Darwin Richard Dawkins Terrence Deacon Lüder Deecke Richard Dedekind Louis de Broglie Stanislas Dehaene Max Delbrück Abraham de Moivre Bernard d'Espagnat Paul Dirac Hans Driesch John Eccles Arthur Stanley Eddington Gerald Edelman Paul Ehrenfest Manfred Eigen Albert Einstein George F. R. Ellis Hugh Everett, III Franz Exner Richard Feynman R. A. Fisher David Foster Joseph Fourier Philipp Frank Steven Frautschi Edward Fredkin Augustin-Jean Fresnel Benjamin Gal-Or Howard Gardner Lila Gatlin Michael Gazzaniga Nicholas Georgescu-Roegen GianCarlo Ghirardi J. Willard Gibbs James J. Gibson Nicolas Gisin Paul Glimcher Thomas Gold A. O. Gomes Brian Goodwin Joshua Greene Dirk ter Haar Jacques Hadamard Mark Hadley Patrick Haggard J. B. S. Haldane Stuart Hameroff Augustin Hamon Sam Harris Ralph Hartley Hyman Hartman Jeff Hawkins John-Dylan Haynes Donald Hebb Martin Heisenberg Werner Heisenberg John Herschel Basil Hiley Art Hobson Jesper Hoffmeyer Don Howard John H. Jackson William Stanley Jevons Roman Jakobson E. T. Jaynes Pascual Jordan Eric Kandel Ruth E. Kastner Stuart Kauffman Martin J. Klein William R. Klemm Christof Koch Simon Kochen Hans Kornhuber Stephen Kosslyn Daniel Koshland Ladislav Kovàč Leopold Kronecker Rolf Landauer Alfred Landé Pierre-Simon Laplace Karl Lashley David Layzer Joseph LeDoux Gerald Lettvin Gilbert Lewis Benjamin Libet David Lindley Seth Lloyd Werner Loewenstein Hendrik Lorentz Josef Loschmidt Alfred Lotka Ernst Mach Donald MacKay Henry Margenau Owen Maroney David Marr Humberto Maturana James Clerk Maxwell Ernst Mayr John McCarthy Warren McCulloch N. David Mermin George Miller Stanley Miller Ulrich Mohrhoff Jacques Monod Vernon Mountcastle Emmy Noether Donald Norman Alexander Oparin Abraham Pais Howard Pattee Wolfgang Pauli Massimo Pauri Wilder Penfield Roger Penrose Steven Pinker Colin Pittendrigh Walter Pitts Max Planck Susan Pockett Henri Poincaré Daniel Pollen Ilya Prigogine Hans Primas Zenon Pylyshyn Henry Quastler Adolphe Quételet Pasco Rakic Nicolas Rashevsky Lord Rayleigh Frederick Reif Jürgen Renn Giacomo Rizzolati A.A. Roback Emil Roduner Juan Roederer Jerome Rothstein David Ruelle David Rumelhart Robert Sapolsky Tilman Sauer Ferdinand de Saussure Jürgen Schmidhuber Erwin Schrödinger Aaron Schurger Sebastian Seung Thomas Sebeok Franco Selleri Claude Shannon Charles Sherrington Abner Shimony Herbert Simon Dean Keith Simonton Edmund Sinnott B. F. Skinner Lee Smolin Ray Solomonoff Roger Sperry John Stachel Henry Stapp Tom Stonier Antoine Suarez Leo Szilard Max Tegmark Teilhard de Chardin Libb Thims William Thomson (Kelvin) Richard Tolman Giulio Tononi Peter Tse Alan Turing C. S. Unnikrishnan Francisco Varela Vlatko Vedral Vladimir Vernadsky Mikhail Volkenstein Heinz von Foerster Richard von Mises John von Neumann Jakob von Uexküll C. H. Waddington John B. Watson Daniel Wegner Steven Weinberg Paul A. Weiss Herman Weyl John Wheeler Jeffrey Wicken Wilhelm Wien Norbert Wiener Eugene Wigner E. O. Wilson Günther Witzany Stephen Wolfram H. Dieter Zeh Semir Zeki Ernst Zermelo Wojciech Zurek Konrad Zuse Fritz Zwicky Presentations Biosemiotics Free Will Mental Causation James Symposium |
Ernst Mayr
Ernst Mayr's great work in biology in the 1940's was to understand that a species was not just a group of similar individuals, but a group that interbreeds. The information content of their DNA differs enough from other species to prevent interbreeding.
In his later years Mayr invested much of his intellectual energy trying to modify the philosophy of science to make a proper place for biology. He thought that logical positivists and empiricists sought mechanical and deterministic laws appropriate to material objects but not to life.
Ludwig Bertalanffy also stressed the historical character of life
He insisted on the importance of information, in the form of the history of living things, as critical to distinguish biology from physics and chemistry. This is basic to information philosophy.
Mayr says in his 1988 Toward A New Philosophy Of Biology,
One of my special concerns has been the neglect of biology in works claiming to be philosophies of science. From the 1920s to the 1960s the logical positivists and physicalists who dominated the philosophy of science had little interest in and even less understanding of biology, because it simply did not fit their methodology. Their endeavors to solve all scientific problems by pure logic and refined measurements were unproductive, if not totally irrelevant, when applied to biological phenomena. The assumption that it should be possible to "reduce" the theories and concepts of all other sciences, including biology, to those of the physical sciences has clearly dominated not only philosophy but science itself, from the days of Galileo and Descartes. But the further the study of biological systems advanced during the past 200 years, the more evident it became how different living systems are from inanimate systems, no matter how complex the inanimate system or how simple the organism. Attempts to "reduce" biological systems to the level of simple physico-chemical processes have failed because during the reduction the systems lost their specifically biological properties. Living systems...have numerous properties that are simply not found in the inanimate world.In most traditional philosophy, the total amount of information in the conceptually closed universe is static, a physical constant of nature. The laws of nature allow no exceptions, they are perfectly causal. Chance and change - in a deep philosophical sense - are thought to be illusions. Information philosophy, by contrast, is a story about invention, about novelty, about biological emergence and new beginnings unseen and unseeable beforehand, a past that is fixed but an ambiguous future that can be shaped by teleological changes in the present that are made possible by Darwinian evolution. Ernst Mayr has been more outspoken on this view than any other biologist. He wrote in his 2001 What Evolution Is, that the "Great Chain of Being" or scala naturae rising from inanimate matter through plants and animals up to the primates and man was an unchanging perfect structure that reflected the mind of the creator. Evolution is the evidence for the conclusion that the world is not constant but is forever changing. In the modern view, Mayr says, the world is of long duration and is forever changing; it is evolving. Even though this may seem strange to us moderns, the concept of evolution was at first alien to Western thought. The power of the Christian fundamentalist dogma was so strong that it required a long series of developments in the seventeenth and eighteenth centuries before the idea of evolution became fully acceptable. As far as science is concerned, the acceptance of evolution meant that the world could no longer be considered merely as the seat of activity of physical laws but had to incorporate history and, more importantly, the observed changes in the living world in the course of time. Gradually the term "evolution" came to represent these changes.The simple mechanical and deterministic philosophy - for every effect a cause - of Newton and Laplace could never really establish "man as machine." This gave rise to theories of a "vital" force or principle behind life. Information philosophy, by contrast, is built on probabilistic laws of nature. But the challenge for information philosophy is to explain the emergence of order and life from chaos. It must account for the phenomenal success of adequately deterministic laws when the material substrate of the universe is irreducibly chaotic and random. Mayr makes it very clear that there are no exceptions to the laws of physics required for evolution. The essential difference is how living things acquire and manage information. It must therefore be emphasized that the modern biologist rejects in any form whatsoever the notion that a "vital force" exists in living organisms which does not obey the laws of physics and chemistry. All processes in organisms, from the interaction of molecules to the complex functions of the brain and other whole organs, strictly obey these physical laws. Where organisms differ from inanimate matter is in the organization of their systems and especially in the possession of coded information.Mayr says that living organisms can not be understood as a causal chain of single causes and effects. Biological phenomena have multiple causes. Actually, so do most physical events. The development of completely new disciplines — evolutionary biology and genetics — was necessary before the centuries-old battle between mechanists and their opponents could be resolved. To the distress of both camps, the conclusion reached was that both were, to some extent, correct. The finding that all processes in living organisms strictly obey the laws of physics and chemistry — that there is no residue of "vital forces" outside the realm of the physical sciences — meant that the mechanists were right. But the finding that the coded information system of living organisms has no equivalent in inanimate nature meant that the antimechanists were also right. This genotype-phenotype duality of the living organism is the reason why it is not sufficient in biology to search for a single cause in the study of a phenomenon, as is often sufficient in the physical sciences.With the emergence of life in the universe, purposeful behavior appeared. The vitalists and creationists assumed that a primordial teleology in the cosmos had created life. Evolution removed the need for a cosmic, pre-existing teleology. Jacques Monod called purposeful behavior in life "teleonomic" to distinguish it from creationist ideas of a "cosmic teleology." The clear recognition of two types of causation in organisms has helped to solve an important problem in biology, the problem of teleology. What is teleology, and to what extent is it a valid concept? These have been burning questions since the time of Aristotle. Kant based his explanation of biological phenomena, particularly of the perfection of adaptations, on teleology — the notion that organisms were designed for some purpose. Teleology was the principal argument used by some of Darwin's major opponents. And the numerous autogenetic theories of evolution, such as orthogenesis, nomogenesis, aristogenesis, and the omega principle (Teilhard de Chardin), were all based on a teleological world view. Indeed, as Jacques Monod (1971) rightly stressed, almost all of the most important ideologies of the past and the present are built on a belief in teleology. It is my belief that the pervasive confusion in this subject has been due to a failure to discriminate among very different processes and phenomena, all labeled "teleological." [T]he word teleological has been indiscriminately applied to four entirely different phenomena or processes. By partitioning so-called teleological phenomena into these four categories, and by introducing an appropriate terminology for each, it is possible to study each of them separately and show that three of them can be explained scientifically. On the other hand, no evidence whatsoever has been found for the existence of the fourth one, cosmic teleology. The most important conclusion of the recent research on teleology is that it is illegitimate to extrapolate from the existence of teleonomic processes (that is, those directed or controlled by the organism's own DNA) and teleomatic processes (those resulting from physical laws) to an existence of cosmic teleology. There is neither a program nor a law that can explain and predict biological evolution in any teleological manner. Nor is there, since 1859, any need for a teleological explanation: The Darwinian mechanism of natural selection with its chance aspects and constraints is fully sufficient.Mayr's teleomatic processes are our ergodic processes in physical nature. Both involve the creation of information. The striking thing about teleonomy is that the management of information is done by processes that are remarkably similar to computer programs, but where the "goal" or direction is created by the computer programmer.. When B. F. Skinner's "black-box" model of the mind gave way to cognitive science in the 1960's, the idea that a mind consists of many distinct functions suggested that a computer with its many subroutine programs could be an effective mind model. Many computer scientists became cognitive scientists. But computers are strictly deterministic logical state machines. So many cognitive scientists continued to lean toward "man as machine" and "mind as (mechanical) computer." Few saw any value to be gained from random "chance." Mayr wrote, The study of genetics has shown that seemingly goal-directed processes in a living organism (teleonomic processes) have a strictly material basis, being controlled by a coded genetic program. Curiously, the coded program is a concept philosophers with a background in logic, physics, or mathematics seem to have great difficulty in understanding and accepting. Since the term program was taken over from the field of informatics, it is sometimes rejected as an anthropomorphism. Yet, the use of the term in biology is fully justified. Even though the mechanism by which the DNA stores and codifies information is of course different from that of a computer, the basic principle is remarkably similar, as demonstrated by the researches of molecular biology. Returning for a moment to the rift between the physicalists and biologists, we must note that advances during the last 150 years not just in biology but in the physical sciences as well have greatly helped to narrow the gap that existed between the two camps. Many of the concepts of classical mechanics and the traditional philosophy of science that were questioned by biologists, such as strict determinism (vs. high frequency of probability), the predictiveness of all processes, or the universality of laws, have now also been either given up entirely by modern physics or at least restricted in applicability. Classical physics was strictly deterministic. Laplace's boast that he would be able to predict the future course of events on earth ad infinitum if he had a complete catalogue of the existing situation was symptomatic of this attitude. Not surprisingly, natural selection with its emphasis on the chance nature of variation was not palatable to the physicists. This is why John Herschel referred to it as the "law of the higgledy-piggledy." Modern physics has theoretically abandoned such determinism, and yet physicists still are far more deterministic in their thinking than biologists.And we could add that philosophers of mind and human agency are distinctly more deterministic and compatibilist than the physicists.
Teleonomy and Teleology
Mayr wrote in 1974 about the importance of using teleological language in biology, despite the criticisms of most scientists, including biologists themselves.
Teleological language is frequently used in biology in order to make statements about the functions of organs, about physiological processes, and about the behavior and actions of species and individuals. Such language is characterized by the use of the words 'function', 'purpose', and 'goal', as well as by statements that something exists or is done 'in order to'.Mayr analyzed the use of the new term "teleonomic" (introduced by Colin Pittendrigh in his 1958 article Adaptation, Natural Selection, and Behavior), Mayr's own 1961 definition of "teleonomic," and Jacques Monod's use of the term teleonomy in his great 1971 work, Chance and Necessity (without mentioning Pittendrigh or Mayr). Pittendrigh invented the term to distinguish the appearance of purpose in biological evolution, specifically Darwinian natural selection, from the ancient idea of "teleology," Aristotle's "telos" or "final cause," a cosmic purpose pre-existing the origin of life. Today the concept of adaptation is beginning to enjoy an improved respectability for several reasons: it is seen as less than perfect; natural selection is better understood; and the engineer-physicist in building end-seeking automata has sanctified the use of teleological jargon. It seems unfortunate that the term 'teleology' should be resurrected and, as I think, abused in this way. The biologists' long-standing confusion would be more fully removed if all end-directed systems were described by some other term, like 'teleonomic', in order to emphasize that the recognition and description of end-directedness does not carry a commitment to Aristotelian teleology as an efficient [sic] casual principle.Mayr provided the Pittendrigh reference in a 1974 article in Boston Studies in the Philosophy of Science. But Mayr thought the uses of "teleonomy" and "teleology" needed clearer definitions. The teleological dilemma, then consists in the fact that numerous and seemingly weighty objections against the use of teleological language have been raised by various critics, and yet biologists have insisted that they would lose a great deal, methodologically and heuristically, if they were prevent from using such language. It is my endeavor to resolve this dilemma by a new analysis, and particularly by a new classification of the various phenomena that have been traditionally designated as 'teleological'. Mayr criticized the use of teleonomy by Pittendrigh and Monod. Pittendrigh for contrasting it with Aristotle's telos, when Aristotle's biological examples were cases of Ptttendrigh's teleonomy, amd Monod for equating teleonomy to adaptation. Mayr had introduced the term teleonomic in 1961, likening it to computer programming.Mayr criticized the use of teleonomy by Pittendrigh and Monod, Pittendrigh for contrasting it with Aristotle's telos, when Aristotle's biological examples were cases of Ptttendrigh's teleonomy, amd Monod for equating teleonomy to adaptation. Mayr had introduced the term teleonomic in 1961, likening it to computer programming. He argued that as early as 1943 Norbert Wiener and his colleagues had shown how communications and control systems utilizing negative feedback can fully explain goal-directed behavior. We owe a great debt of gratitude to Rosenblueth et al. (1943) for their endeavor to find a new solution for the explanation of teleological phenomena in organisms. They correctly identified two aspects of such phenomena, (1) that they are seemingly purposeful being directed toward a goal, and (2) that they consist of active behavior. The background of these authors was in the newly developing field of cybernetics and it is only natural that they should have stressed the fact that goal directed behavior is characterized by mechanisms which correct errors committed during the goal-seeking. They considered the negative feedback loops of such behavior as its most characteristic aspect and stated "teleological behavior thus becomes synonymous with behavior controlled by negative feedback." This statement emphasizes important aspects of teleological behavior, yet it misses the crucial point: The truly characteristic aspect of goal-seeking behavior is not that mechanisms exist which improve the precision with which a goal is reached, but rather that mechanisms exist which initiate, i.e. 'cause' this goal-seeking behavior. It is not the thermostat that determines the temperature of a house, but the person who sets the thermostat. It is not the torpedo which determines toward what ship it will be shot and at what time, but the naval officer who releases the torpedo. Negative feedbacks only improve the precision of goal-seeking, but do not determine it. Feedback devices are only executive mechanisms that operate during the translation of a program.But in 1974 he sharpened his definition Mayr wrote to Pittendrigh to explore his intentions in creating the term "teleonomy." Pittendrigh replied, You ask about the word 'teleonomy'. You are correct that I did introduce the term into biology and, moreover, I invented it. In the course of thinking about that paper which I wrote for the Simpson and Roe book (in which the term is introduced) I was haunted by that famous old quip of Haldane's to the effect that 'Teleology is like a mistress to a biologist: he cannot live without her but he's unwilling to be seen with her in public'. The more I thought about that, it occurred to me that the whole thing was nonsense - that what it was the biologist couldn't live with was not the illegitimacy of the relationship, but the relationship itself. Teleology in the Aristotelian form has, of course, the end as immediate, 'efficient' cause. And that is precisely what the biologist (with the whole history of science since 1500 behind him) cannot accept: it is unacceptable in a world that is always mechanistic (and of course in this I include probabilistic as well as strictly deterministic). What it was the biologist could not escape was the plain fact – or rather the fundamental fact – which he must (as scientist) explain: that the objects of biological analysis are organizations (he calls them organisms) and, as such, are end-directed. Organization is more that mere order; order lacks end-directedness; organization is end-directed. [I recall a wonderful conversation with John von Neumann in which we explored the difference between 'mere order' and 'organization' and his insistence (I already believed it) that the concept of organization (as contextually defined in its everyday use) always involved 'purpose' or end-directedness. I wanted a word that would allow me (all of us biologists) to describe, stress or simply to allude to – without offense – this end-directedness of a perfectly respectable mechanistic system. Teleology would not do, carrying with it that implication that the end is causally effective in the current operation of the machine. Teleonomic, it is hoped, escapes that plain falsity which is anyhow unnecessary. Haldane was, in this sense wrong (surely a rare event): we can live without teleology. The crux of the problem lies of course in unconfounding the mechanism of evolutionary change and the physiological mechanism of the organism abstracted from the evolutionary time scale. The most general of all biological 'ends', or 'purposes' is of course perpetuation by reproduction. That end [and all its subsidiary 'ends' of feeding, defense and survival generally] is in some sense effective in causing natural selection; in causing evolutionary change; but not in causing itself. In brief, we have failed in the past to unconfound causation in the historical origins of a system and causation in the contemporary working of the system… You ask in your letter whether or not one of the 'information' people didn't introduce it. They did not, unless you wish to call me an information bloke. It is, however, true that my own thinking about the whole thing was very significantly affected by a paper which was published by Wiener and Bigelow with the intriguing title 'Purposeful machines'. This pointed out that in the then newly-emerging computer period it was possible to design and build machines that had ends or purposes without implying that the purposes were the cause of the immediate operation of the machine.
A Two-Step Process
In his 1988 Toward a New Philosophy of Biology, Mayr wrote...
Evolutionary change in every generation is a two-step process: the production of genetically unique new individuals and the selection of the progenitors of the next generation. The important role of chance at the first step, the production of variability, is universally acknowledged, but the second step, natural selection, is on the whole viewed rather deterministically: Selection is a non-chance process.In his 1997 article for the Proceedings of the National Academy of Science, "The Object of Selection," he wrote One additional basic aspect of selection must be mentioned here because it is important for the adoption of an unequivocal terminology. Darwinian selection, as it is now fully understood by the evolutionists, is a two-step process. The first step is the production of a vast amount of variation that will serve as the material needed for the second step, the actual process of selection or elimination.Would Ernst Mayr have liked the recent two-stage free will models of neurobiologist Martin Heisenberg and his many predecessors back to William James?
References
The Objects of Selection
The Idea of Teleology
Teleological and Teleonomic
For Teachers
For Scholars
|