Philosophers
Mortimer Adler Rogers Albritton Alexander of Aphrodisias Samuel Alexander William Alston Anaximander G.E.M.Anscombe Anselm Louise Antony Thomas Aquinas Aristotle David Armstrong Harald Atmanspacher Robert Audi Augustine J.L.Austin A.J.Ayer Alexander Bain Mark Balaguer Jeffrey Barrett William Barrett William Belsham Henri Bergson George Berkeley Isaiah Berlin Richard J. Bernstein Bernard Berofsky Robert Bishop Max Black Susanne Bobzien Emil du Bois-Reymond Hilary Bok Laurence BonJour George Boole Émile Boutroux Daniel Boyd F.H.Bradley C.D.Broad Michael Burke Jeremy Butterfield Lawrence Cahoone C.A.Campbell Joseph Keim Campbell Rudolf Carnap Carneades Nancy Cartwright Gregg Caruso Ernst Cassirer David Chalmers Roderick Chisholm Chrysippus Cicero Tom Clark Randolph Clarke Samuel Clarke Anthony Collins Antonella Corradini Diodorus Cronus Jonathan Dancy Donald Davidson Mario De Caro Democritus Daniel Dennett Jacques Derrida René Descartes Richard Double Fred Dretske John Dupré John Earman Laura Waddell Ekstrom Epictetus Epicurus Austin Farrer Herbert Feigl Arthur Fine John Martin Fischer Frederic Fitch Owen Flanagan Luciano Floridi Philippa Foot Alfred Fouilleé Harry Frankfurt Richard L. Franklin Bas van Fraassen Michael Frede Gottlob Frege Peter Geach Edmund Gettier Carl Ginet Alvin Goldman Gorgias Nicholas St. John Green H.Paul Grice Ian Hacking Ishtiyaque Haji Stuart Hampshire W.F.R.Hardie Sam Harris William Hasker R.M.Hare Georg W.F. Hegel Martin Heidegger Heraclitus R.E.Hobart Thomas Hobbes David Hodgson Shadsworth Hodgson Baron d'Holbach Ted Honderich Pamela Huby David Hume Ferenc Huoranszki Frank Jackson William James Lord Kames Robert Kane Immanuel Kant Tomis Kapitan Walter Kaufmann Jaegwon Kim William King Hilary Kornblith Christine Korsgaard Saul Kripke Thomas Kuhn Andrea Lavazza Christoph Lehner Keith Lehrer Gottfried Leibniz Jules Lequyer Leucippus Michael Levin Joseph Levine George Henry Lewes C.I.Lewis David Lewis Peter Lipton C. Lloyd Morgan John Locke Michael Lockwood Arthur O. Lovejoy E. Jonathan Lowe John R. Lucas Lucretius Alasdair MacIntyre Ruth Barcan Marcus Tim Maudlin James Martineau Nicholas Maxwell Storrs McCall Hugh McCann Colin McGinn Michael McKenna Brian McLaughlin John McTaggart Paul E. Meehl Uwe Meixner Alfred Mele Trenton Merricks John Stuart Mill Dickinson Miller G.E.Moore Thomas Nagel Otto Neurath Friedrich Nietzsche John Norton P.H.Nowell-Smith Robert Nozick William of Ockham Timothy O'Connor Parmenides David F. Pears Charles Sanders Peirce Derk Pereboom Steven Pinker U.T.Place Plato Karl Popper Porphyry Huw Price H.A.Prichard Protagoras Hilary Putnam Willard van Orman Quine Frank Ramsey Ayn Rand Michael Rea Thomas Reid Charles Renouvier Nicholas Rescher C.W.Rietdijk Richard Rorty Josiah Royce Bertrand Russell Paul Russell Gilbert Ryle Jean-Paul Sartre Kenneth Sayre T.M.Scanlon Moritz Schlick John Duns Scotus Arthur Schopenhauer John Searle Wilfrid Sellars David Shiang Alan Sidelle Ted Sider Henry Sidgwick Walter Sinnott-Armstrong Peter Slezak J.J.C.Smart Saul Smilansky Michael Smith Baruch Spinoza L. Susan Stebbing Isabelle Stengers George F. Stout Galen Strawson Peter Strawson Eleonore Stump Francisco Suárez Richard Taylor Kevin Timpe Mark Twain Peter Unger Peter van Inwagen Manuel Vargas John Venn Kadri Vihvelin Voltaire G.H. von Wright David Foster Wallace R. Jay Wallace W.G.Ward Ted Warfield Roy Weatherford C.F. von Weizsäcker William Whewell Alfred North Whitehead David Widerker David Wiggins Bernard Williams Timothy Williamson Ludwig Wittgenstein Susan Wolf Scientists David Albert Michael Arbib Walter Baade Bernard Baars Jeffrey Bada Leslie Ballentine Marcello Barbieri Gregory Bateson Horace Barlow John S. Bell Mara Beller Charles Bennett Ludwig von Bertalanffy Susan Blackmore Margaret Boden David Bohm Niels Bohr Ludwig Boltzmann Emile Borel Max Born Satyendra Nath Bose Walther Bothe Jean Bricmont Hans Briegel Leon Brillouin Stephen Brush Henry Thomas Buckle S. H. Burbury Melvin Calvin Donald Campbell Sadi Carnot Anthony Cashmore Eric Chaisson Gregory Chaitin Jean-Pierre Changeux Rudolf Clausius Arthur Holly Compton John Conway Jerry Coyne John Cramer Francis Crick E. P. Culverwell Antonio Damasio Olivier Darrigol Charles Darwin Richard Dawkins Terrence Deacon Lüder Deecke Richard Dedekind Louis de Broglie Stanislas Dehaene Max Delbrück Abraham de Moivre Bernard d'Espagnat Paul Dirac Hans Driesch John Eccles Arthur Stanley Eddington Gerald Edelman Paul Ehrenfest Manfred Eigen Albert Einstein George F. R. Ellis Hugh Everett, III Franz Exner Richard Feynman R. A. Fisher David Foster Joseph Fourier Philipp Frank Steven Frautschi Edward Fredkin Augustin-Jean Fresnel Benjamin Gal-Or Howard Gardner Lila Gatlin Michael Gazzaniga Nicholas Georgescu-Roegen GianCarlo Ghirardi J. Willard Gibbs James J. Gibson Nicolas Gisin Paul Glimcher Thomas Gold A. O. Gomes Brian Goodwin Joshua Greene Dirk ter Haar Jacques Hadamard Mark Hadley Patrick Haggard J. B. S. Haldane Stuart Hameroff Augustin Hamon Sam Harris Ralph Hartley Hyman Hartman Jeff Hawkins John-Dylan Haynes Donald Hebb Martin Heisenberg Werner Heisenberg John Herschel Basil Hiley Art Hobson Jesper Hoffmeyer Don Howard John H. Jackson William Stanley Jevons Roman Jakobson E. T. Jaynes Pascual Jordan Eric Kandel Ruth E. Kastner Stuart Kauffman Martin J. Klein William R. Klemm Christof Koch Simon Kochen Hans Kornhuber Stephen Kosslyn Daniel Koshland Ladislav Kovàč Leopold Kronecker Rolf Landauer Alfred Landé Pierre-Simon Laplace Karl Lashley David Layzer Joseph LeDoux Gerald Lettvin Gilbert Lewis Benjamin Libet David Lindley Seth Lloyd Werner Loewenstein Hendrik Lorentz Josef Loschmidt Alfred Lotka Ernst Mach Donald MacKay Henry Margenau Owen Maroney David Marr Humberto Maturana James Clerk Maxwell Ernst Mayr John McCarthy Warren McCulloch N. David Mermin George Miller Stanley Miller Ulrich Mohrhoff Jacques Monod Vernon Mountcastle Emmy Noether Donald Norman Travis Norsen Alexander Oparin Abraham Pais Howard Pattee Wolfgang Pauli Massimo Pauri Wilder Penfield Roger Penrose Steven Pinker Colin Pittendrigh Walter Pitts Max Planck Susan Pockett Henri Poincaré Daniel Pollen Ilya Prigogine Hans Primas Zenon Pylyshyn Henry Quastler Adolphe Quételet Pasco Rakic Nicolas Rashevsky Lord Rayleigh Frederick Reif Jürgen Renn Giacomo Rizzolati A.A. Roback Emil Roduner Juan Roederer Jerome Rothstein David Ruelle David Rumelhart Robert Sapolsky Tilman Sauer Ferdinand de Saussure Jürgen Schmidhuber Erwin Schrödinger Aaron Schurger Sebastian Seung Thomas Sebeok Franco Selleri Claude Shannon Charles Sherrington Abner Shimony Herbert Simon Dean Keith Simonton Edmund Sinnott B. F. Skinner Lee Smolin Ray Solomonoff Roger Sperry John Stachel Henry Stapp Tom Stonier Antoine Suarez Leo Szilard Max Tegmark Teilhard de Chardin Libb Thims William Thomson (Kelvin) Richard Tolman Giulio Tononi Peter Tse Alan Turing C. S. Unnikrishnan Francisco Varela Vlatko Vedral Vladimir Vernadsky Mikhail Volkenstein Heinz von Foerster Richard von Mises John von Neumann Jakob von Uexküll C. H. Waddington John B. Watson Daniel Wegner Steven Weinberg Paul A. Weiss Herman Weyl John Wheeler Jeffrey Wicken Wilhelm Wien Norbert Wiener Eugene Wigner E. O. Wilson Günther Witzany Stephen Wolfram H. Dieter Zeh Semir Zeki Ernst Zermelo Wojciech Zurek Konrad Zuse Fritz Zwicky Presentations Biosemiotics Free Will Mental Causation James Symposium |
Jean Bricmont
Jean Bricmont is a philosopher of science and theoretical physicist noted for his books on quantum mechanics and his attacks on postmodernist ideas about science, which are a consequence of the decades of confusion and puzzlement about quantum mechanics.
Bricmont has written two books on quantum mechanics: Making Sense of Quantum Mechanics in 2016 and Quantum Sense and Nonsense in 2017.
Both books strongly defend the Louis deBroglie and David Bohm causal and deterministic version of quantum mechanics today known as Bohmian Mechanics.
Making Sense
In his first book, Bricmont critically examines the quantum "nonsense" he sees coming mostly from the Copenhagen Interpretation of quantum mechanics. He includes dozens of important quotations from physicists through the years, from the founders of quantum mechanics to physicists today proposing "alternative theories" to standard quantum mechanics.
He has two extensive chapters on the leading "mysteries" of quantum mechanics,
The first includes puzzles arising from the quantum-mechanical wave function, - the principle of superposition, which gives rise to the two-slit-experiment, the measurement problem, Schrödinger's Cat, and Max Born's "statistical interpretation" of the wave function.
Bricmont says this chapter builds on David Albert's 1992 book Quantum Mechanics.
Bricmont's second "mystery" chapter is on nonlocality and entanglement, problems that were originally seen by Albert Einstein as early as 1905, but which he developed clearly between 1927 and 1935.
The famous Einstein-Podolsky-Rosen paper of 1935 and Erwin Schrödinger's reaction to it the same year were critically analyzed by John Bell starting in the 1960's.
Bricmont's work is largely based on the works of deBroglie, Bohm, and Bell. His extensive chapter on their work calls it a "hidden variables" theory.
In this chapter, we will outline a theory of “hidden variables” (although they are not really hidden) that accounts for all the phenomena predicted by ordinary (non- relativistic) quantum mechanics, is not contradicted by the no hidden variables theorems, explains why measurements do not in general measure pre-existing properties of a system (in other words, it explains why measuring devices have an “active role”), and incorporates and to some extent explains the nonlocality implied by Bell’s theorem. It would seem that, given all the claims to the effect that such a theory is impossible, its mere existence should be a subject of considerable interest, but this is not the case. Although interest in the de Broglie-Bohm theory is probably increasing, it is still widely ignored or misrepresented, even by experts on foundations of quantum mechanics. The theory was introduced at approximately the same time as the Copenhagen interpretation, in 1927, by Louis de Broglie, but it was rejected at the time by a large majority of physicists, and ignored even by critics of the Copenhagen school, like Einstein and Schrodinger. The theory was even abandoned by its founder, only to be rediscovered and completed by David Bohm in 1952, then further developed and advertised by John Bell.He concludes that this theory naturally accounts for the following: 1. The measurement formalism, including the collapse rule.Bricmont discusses determinism and free will in a chapter called a "philosophical" intermezzo. He writes: ...the problem is: what is the alternative to determinism within physics? Nothing has ever been proposed except pure randomness Or, in other words, events with no cause. But that will not give us a picture of the world in which free will exists either. Our feeling of free will is not that there is some intrinsically random process at work in our minds, but that conscious choices are made. And that is simply something that no known physical theory accounts for. Our feeling of free will implies that there is a causal agent in the world, the “I”, that is simply “above” all physical laws. It suggests a dualistic view of the world, which itself meets great difficulties. One solution is, as mentioned above, to declare that free will is an illusion. But if that is the case, it is a “necessary illusion” in the sense that we cannot live without, in some sense, believing in it, unlike, say, believing in the dogma of the Immaculate Conception. It is not clear what could constitute a solution to that problem, but one should avoid using this problem to create within physics a prejudice in favor of indeterminism, since neither determinism nor indeterminism in physics can “save” free will.This of course is the centuries old standard argument against free will.
Sense and Nonsense
Quantum Sense and Nonsense, Bricmont makes all the same basic arguments as Making Sense, but with a minimum of the equations that frighten off popular readers.
Bricmont, following Bell, says that Bohmian Mechanics is a "complete deterministic theory" that can "replace" standard quantum mechanics. Bohmian mechanics describes the instantaneous action-at-a-distance behind "nonlocality."
Bricmont asks whether the Universe is "indeterministic?"
One way to “prove” indeterminism is to claim that quantum mechanics is both intrinsically indeterministic and complete, but its completeness is precisely what has to be demonstrated. But now, we can say more: we have a theory that does complete quantum mechanics and that is deterministic, so that the claim that quantum mechanics proves indeterminism is surely false. However, determinism in the de Broglie— Bohm theory is a special sort and has two properties that make it somewhat different from what one might expect from a deterministic theory in the setting of classical physics: (1) First of all, the de Broglie-Bohm theory is nonlocal. This means that, even if one wants to determine the future of what happens only in a given region of space, denoted A, one has in principle to specify the physical state of the entire Universe, since events in regions that are arbitrarily far from region A might influence instantaneously what happens in the latter... (2) Secondly, the de Broglie-Bohm theory contains in its very formulation an element of radical uncertainty that one might not expect in a deterministic theory. Indeed, the best analogy is to think of the initial conditions of quantum systems as being like the ones of a large number of coins that are being tossed.Bricmont says about Einstein's famous quote, "no, God does not play dice or at least there is no argument based on quantum mechanics that indicates that he does. The idea of determinism can be maintained, thanks to the de Broglie—Bohm theory."
Fashionable Nonsense
In 1996, physicist Alan Sokal published a tongue-in-cheek article in the postmodern cultural affairs journal Social Text. Once published, Sokal revealed that the article was a hoax, loaded with jargon that exposed the editors inability to separate science from nonsense. Actually, the main body of article was filled with accurate, but seriously obscure, quotes from the founders of quantum mechanics on their "Copenhagen Interpretation." Sokal's quotes from postmodern authors were equally obscure, and equally accurate.
The following year, Bricmont collaborated with Sokal on the book Fashionable Nonsense.
Normal | Teacher | Scholar
|