Philosophers
Mortimer Adler Rogers Albritton Alexander of Aphrodisias Samuel Alexander William Alston Anaximander G.E.M.Anscombe Anselm Louise Antony Thomas Aquinas Aristotle David Armstrong Harald Atmanspacher Robert Audi Augustine J.L.Austin A.J.Ayer Alexander Bain Mark Balaguer Jeffrey Barrett William Barrett William Belsham Henri Bergson George Berkeley Isaiah Berlin Richard J. Bernstein Bernard Berofsky Robert Bishop Max Black Susanne Bobzien Emil du Bois-Reymond Hilary Bok Laurence BonJour George Boole Émile Boutroux Daniel Boyd F.H.Bradley C.D.Broad Michael Burke Jeremy Butterfield Lawrence Cahoone C.A.Campbell Joseph Keim Campbell Rudolf Carnap Carneades Nancy Cartwright Gregg Caruso Ernst Cassirer David Chalmers Roderick Chisholm Chrysippus Cicero Tom Clark Randolph Clarke Samuel Clarke Anthony Collins Antonella Corradini Diodorus Cronus Jonathan Dancy Donald Davidson Mario De Caro Democritus Daniel Dennett Jacques Derrida René Descartes Richard Double Fred Dretske John Earman Laura Waddell Ekstrom Epictetus Epicurus Austin Farrer Herbert Feigl Arthur Fine John Martin Fischer Frederic Fitch Owen Flanagan Luciano Floridi Philippa Foot Alfred Fouilleé Harry Frankfurt Richard L. Franklin Bas van Fraassen Michael Frede Gottlob Frege Peter Geach Edmund Gettier Carl Ginet Alvin Goldman Gorgias Nicholas St. John Green H.Paul Grice Ian Hacking Ishtiyaque Haji Stuart Hampshire W.F.R.Hardie Sam Harris William Hasker R.M.Hare Georg W.F. Hegel Martin Heidegger Heraclitus R.E.Hobart Thomas Hobbes David Hodgson Shadsworth Hodgson Baron d'Holbach Ted Honderich Pamela Huby David Hume Ferenc Huoranszki Frank Jackson William James Lord Kames Robert Kane Immanuel Kant Tomis Kapitan Walter Kaufmann Jaegwon Kim William King Hilary Kornblith Christine Korsgaard Saul Kripke Thomas Kuhn Andrea Lavazza James Ladyman Christoph Lehner Keith Lehrer Gottfried Leibniz Jules Lequyer Leucippus Michael Levin Joseph Levine George Henry Lewes C.I.Lewis David Lewis Peter Lipton C. Lloyd Morgan John Locke Michael Lockwood Arthur O. Lovejoy E. Jonathan Lowe John R. Lucas Lucretius Alasdair MacIntyre Ruth Barcan Marcus Tim Maudlin James Martineau Nicholas Maxwell Storrs McCall Hugh McCann Colin McGinn Michael McKenna Brian McLaughlin John McTaggart Paul E. Meehl Uwe Meixner Alfred Mele Trenton Merricks John Stuart Mill Dickinson Miller G.E.Moore Ernest Nagel Thomas Nagel Otto Neurath Friedrich Nietzsche John Norton P.H.Nowell-Smith Robert Nozick William of Ockham Timothy O'Connor Parmenides David F. Pears Charles Sanders Peirce Derk Pereboom Steven Pinker U.T.Place Plato Karl Popper Porphyry Huw Price H.A.Prichard Protagoras Hilary Putnam Willard van Orman Quine Frank Ramsey Ayn Rand Michael Rea Thomas Reid Charles Renouvier Nicholas Rescher C.W.Rietdijk Richard Rorty Josiah Royce Bertrand Russell Paul Russell Gilbert Ryle Jean-Paul Sartre Kenneth Sayre T.M.Scanlon Moritz Schlick John Duns Scotus Arthur Schopenhauer John Searle Wilfrid Sellars David Shiang Alan Sidelle Ted Sider Henry Sidgwick Walter Sinnott-Armstrong Peter Slezak J.J.C.Smart Saul Smilansky Michael Smith Baruch Spinoza L. Susan Stebbing Isabelle Stengers George F. Stout Galen Strawson Peter Strawson Eleonore Stump Francisco Suárez Richard Taylor Kevin Timpe Mark Twain Peter Unger Peter van Inwagen Manuel Vargas John Venn Kadri Vihvelin Voltaire G.H. von Wright David Foster Wallace R. Jay Wallace W.G.Ward Ted Warfield Roy Weatherford C.F. von Weizsäcker William Whewell Alfred North Whitehead David Widerker David Wiggins Bernard Williams Timothy Williamson Ludwig Wittgenstein Susan Wolf Xenophon Scientists David Albert Michael Arbib Walter Baade Bernard Baars Jeffrey Bada Leslie Ballentine Marcello Barbieri Gregory Bateson Horace Barlow John S. Bell Mara Beller Charles Bennett Jacob Berandes Ludwig von Bertalanffy Susan Blackmore Margaret Boden David Bohm Niels Bohr Ludwig Boltzmann Emile Borel Max Born Satyendra Nath Bose Walther Bothe Jean Bricmont Hans Briegel Leon Brillouin Stephen Brush Henry Thomas Buckle S. H. Burbury Melvin Calvin Donald Campbell Sadi Carnot Anthony Cashmore Eric Chaisson Gregory Chaitin Jean-Pierre Changeux Rudolf Clausius Arthur Holly Compton John Conway Simon Conway-Morris Jerry Coyne John Cramer Francis Crick E. P. Culverwell Antonio Damasio Olivier Darrigol Charles Darwin Richard Dawkins Terrence Deacon Lüder Deecke Richard Dedekind Louis de Broglie Stanislas Dehaene Max Delbrück Abraham de Moivre Bernard d'Espagnat Paul Dirac Hans Driesch John Dupré John Eccles Arthur Stanley Eddington Gerald Edelman Paul Ehrenfest Manfred Eigen Albert Einstein George F. R. Ellis Hugh Everett, III Franz Exner Richard Feynman R. A. Fisher David Foster Joseph Fourier Philipp Frank Steven Frautschi Edward Fredkin Augustin-Jean Fresnel Benjamin Gal-Or Howard Gardner Lila Gatlin Michael Gazzaniga Nicholas Georgescu-Roegen GianCarlo Ghirardi J. Willard Gibbs James J. Gibson Nicolas Gisin Paul Glimcher Thomas Gold A. O. Gomes Brian Goodwin Joshua Greene Dirk ter Haar Jacques Hadamard Mark Hadley Patrick Haggard J. B. S. Haldane Stuart Hameroff Augustin Hamon Sam Harris Ralph Hartley Hyman Hartman Jeff Hawkins John-Dylan Haynes Donald Hebb Martin Heisenberg Werner Heisenberg Grete Hermann John Herschel Basil Hiley Art Hobson Jesper Hoffmeyer Don Howard John H. Jackson William Stanley Jevons Roman Jakobson E. T. Jaynes Pascual Jordan Eric Kandel Ruth E. Kastner Stuart Kauffman Martin J. Klein William R. Klemm Christof Koch Simon Kochen Hans Kornhuber Stephen Kosslyn Daniel Koshland Ladislav Kovàč Leopold Kronecker Rolf Landauer Alfred Landé Pierre-Simon Laplace Karl Lashley David Layzer Joseph LeDoux Gerald Lettvin Gilbert Lewis Benjamin Libet David Lindley Seth Lloyd Werner Loewenstein Hendrik Lorentz Josef Loschmidt Alfred Lotka Ernst Mach Donald MacKay Henry Margenau Owen Maroney David Marr Humberto Maturana James Clerk Maxwell Ernst Mayr John McCarthy Warren McCulloch N. David Mermin George Miller Stanley Miller Ulrich Mohrhoff Jacques Monod Vernon Mountcastle Emmy Noether Donald Norman Travis Norsen Alexander Oparin Abraham Pais Howard Pattee Wolfgang Pauli Massimo Pauri Wilder Penfield Roger Penrose Steven Pinker Colin Pittendrigh Walter Pitts Max Planck Susan Pockett Henri Poincaré Daniel Pollen Ilya Prigogine Hans Primas Zenon Pylyshyn Henry Quastler Adolphe Quételet Pasco Rakic Nicolas Rashevsky Lord Rayleigh Frederick Reif Jürgen Renn Giacomo Rizzolati A.A. Roback Emil Roduner Juan Roederer Frank Rosenblatt Jerome Rothstein David Ruelle David Rumelhart Robert Sapolsky Tilman Sauer Ferdinand de Saussure Jürgen Schmidhuber Erwin Schrödinger Aaron Schurger Sebastian Seung Thomas Sebeok Franco Selleri Claude Shannon Charles Sherrington Abner Shimony Herbert Simon Dean Keith Simonton Edmund Sinnott B. F. Skinner Lee Smolin Ray Solomonoff Roger Sperry John Stachel Henry Stapp Tom Stonier Antoine Suarez Leo Szilard Max Tegmark Teilhard de Chardin Libb Thims William Thomson (Kelvin) Richard Tolman Giulio Tononi Peter Tse Alan Turing C. S. Unnikrishnan Nico van Kampen Francisco Varela Vlatko Vedral Vladimir Vernadsky Mikhail Volkenstein Heinz von Foerster Richard von Mises John von Neumann Jakob von Uexküll C. H. Waddington James D. Watson John B. Watson Daniel Wegner Steven Weinberg Paul A. Weiss Herman Weyl John Wheeler Jeffrey Wicken Wilhelm Wien Norbert Wiener Eugene Wigner E. O. Wilson Günther Witzany Stephen Wolfram H. Dieter Zeh Semir Zeki Ernst Zermelo Wojciech Zurek Konrad Zuse Fritz Zwicky Presentations Biosemiotics Free Will Mental Causation James Symposium |
Jacob Barandes
Jacob Barandes has joint faculty appointments in the physics and philosophy departments at Harvard University, and does research in the philosophy of physics.
"Stepping outside the wave function paradigm," Barandes says, he proposes a new formulation of quantum mechanics (not simply an interpretation) in terms of old-fashioned configuration spaces together with what he calls "unistochastic" laws.
Barandes' formulation replaces the abstract wave function of Erwin Schrödinger's wave mechanics formulation and the eigenfunctions, eigenvectors, and eigenstates of Werner Heisenberg's matrix mechanics formulation, and John von Neumann and P.A.M.Dirac's axiomatic formulation on Hilbert vector spaces.
In particular, Barandes replaces their transition probabilities between quantum states with "directed conditional probabilities" in stochastic processes. And he describes their time evolution with linear maps that describe the dynamics of a quantum system. In the realm
of quantum information theory these maps are referred to as quantum channels. These linear maps can be interpreted as a Hilbert space.
If the time evolution of a system from t=0 to t=2 can be divided into first t=0 to t=1, then t=1 to t=2, he calls it divisible, otherwise time evolution is indivisible.
In his 2025 paper The Stochastic-Quantum Correspondence, for the Philosophy and Physics Group at the London School of Economics, Barandes shows how his stochastic approach recovers the familiar Schrödinger wave equation, von Neumann's unitary time evolution, and other equations of standard quantum theory.
In his 2024 paper "New Prospects for a Causally Local Formulation of Quantum Theory," Barandes introduces a "new principle of causal locality" that is " intended to improve on [John] Bell's criteria."
Barandes first defines the terms "signal-local" and "signal-nonlocal."
In physical theories like Newtonian mechanics that involve forces, one can ask whether those forces are limited by the speed of light, or instead consist of faster-than-light action at a distance... In principle, there are no constraints in Newtonian mechanics that would preclude sending superluminal signals—say, by exploiting the action-at-a-distance features of Newtonian gravitational forces. Newtonian mechanics is therefore presumably signal-nonlocal.He then defines a type of locality he calls causal locality This paper will be concerned with a different type of locality, called causal locality, which will be taken to consist of the following statement: Causal influences should not be able to propagate faster than light.Finally, Barandes describes Bell as introducing a new principle of local causality. Bell’s principle of local causality is the assumption that the asserted common causes in question must specifically take the form of variables that can be conditioned on and then summed or integrated over... Bell’s principle of local causality...implicitly depends on an assumption that goes beyond questions of locality. That implicit assumption is called Reichenbach’s principle of common causes. Reichenbach’s principle of common causes states that if two variables A and B are correlated, in the sense that their joint probability P(A,B) fails to factorize as the product of their standalone probabilities P(A) and P(B),Barandes "especially thanks" Travis Norsen. Norsen mentions Bell's formulation of local causality and illustrates Barandes' point about overlapping past light cones. ![]() Fig. 8.4 Space-time regions relevant to Bell’s formulation of local causality. Bell writes: “Full specification of what happens in 3 makes events in 2 irrelevant for predictions about 1 in a locally causal theory”But Norsen then explicitly shows how a common cause from the initial entanglement is still in the past light cone of the "separated" measurements at A and B. ![]() Fig. 8.5 Space-time diagram for the Bell experiment. The particle pair is emitted at the “flash’' at the bottom of the diagram; world-lines for the two individual particles flying apart in opposite directions are represented by the gray dashed lines. The (large!) region 3 encompasses both particles at some intermediate time and shields the two measurement regions, 1 and 2. from their overlapping past light cones in the way that is required in Bell's formulation of locality. ![]() Suppose that the two subsystems Q and R are not kept at spacelike separation during the physical process in question, but locally interact at some intermediate time t′ between 0 and t. Then, again following standard textbook arguments, the overall system’s unitary time-evolution operator UQR(t) will fail to tensor-factorize at t′:
Note that the intermediate time t' is precisely the moment the particles Q and R are in contact and causally local entangled. These locally causal influences do not propagate faster than light. Erwin Schrödinger said ΨAB cannot be represented as a simple product of two independent single-particle states ΨA ΨB
UQR(t′) ≠ UQ(t′) ⊗ UR(t′). (59) Because the corresponding transition matrix ΓQR(t) encodes cumulative statistical effects starting at the initial time 0, the transition matrix will continue to fail to tensor-factorize for all times t ≥ t′ (at least until the next division event): ΓQR(t) ≠ ΓQ(t) ⊗ ΓR(t) [for t ≥ t′]. (60) The breakdown in tensor-factorization for t ≥ t′ is precisely entanglement, as manifested at the level of the underlying indivisible stochastic process... so one can conclude that the two subsystems Q and R exert causal influences on each other, stemming from their local interaction at the time t′.
The initial entanglement at t' is an initial casually local event that puts the particles in a spherically symmetric state with total spin zero.
During the time evolution from t' to t, the conservation of spin angular momentum is a condition or constraint on total spin (a "hidden constant" if not a hidden variable?) that will locally cause? the measurements at A and B to be perfectly correlated as long as Alice and Bob agree ahead of time t to measure at the same angle (maintaining planar symmetry)
If their measurements diverge by angle Θ, correlations will fall off by cos2Θ, as observed in all Bell experiments. (the "law of Malus")
Notice that this local interaction, despite being the ‘common cause’ of the correlations between Q and R, is not the sort of ‘variable’ that can be plugged into the unistochastic theory’s microphysical conditional probabilities. Reichenbach’s principle of common causes therefore does not hold.Normal | Teacher | Scholar |