Citation for this page in APA citation style.           Close


Core Concepts

Abduction
Belief
Best Explanation
Cause
Certainty
Chance
Coherence
Correspondence
Decoherence
Divided Line
Downward Causation
Emergence
Emergent Dualism
ERR
Identity Theory
Infinite Regress
Information
Intension/Extension
Intersubjectivism
Justification
Materialism
Meaning
Mental Causation
Multiple Realizability
Naturalism
Necessity
Possible Worlds
Postmodernism
Probability
Realism
Reductionism
Schrödinger's Cat
Supervenience
Truth
Universals

Philosophers

Mortimer Adler
Rogers Albritton
Alexander of Aphrodisias
Samuel Alexander
William Alston
Anaximander
G.E.M.Anscombe
Anselm
Louise Antony
Thomas Aquinas
Aristotle
David Armstrong
Harald Atmanspacher
Robert Audi
Augustine
J.L.Austin
A.J.Ayer
Alexander Bain
Mark Balaguer
Jeffrey Barrett
William Barrett
William Belsham
Henri Bergson
George Berkeley
Isaiah Berlin
Richard J. Bernstein
Bernard Berofsky
Robert Bishop
Max Black
Susanne Bobzien
Emil du Bois-Reymond
Hilary Bok
Laurence BonJour
George Boole
Émile Boutroux
F.H.Bradley
C.D.Broad
Michael Burke
Lawrence Cahoone
C.A.Campbell
Joseph Keim Campbell
Rudolf Carnap
Carneades
Ernst Cassirer
David Chalmers
Roderick Chisholm
Chrysippus
Cicero
Randolph Clarke
Samuel Clarke
Anthony Collins
Antonella Corradini
Diodorus Cronus
Jonathan Dancy
Donald Davidson
Mario De Caro
Democritus
Daniel Dennett
Jacques Derrida
René Descartes
Richard Double
Fred Dretske
John Dupré
John Earman
Laura Waddell Ekstrom
Epictetus
Epicurus
Herbert Feigl
Arthur Fine
John Martin Fischer
Frederic Fitch
Owen Flanagan
Luciano Floridi
Philippa Foot
Alfred Fouilleé
Harry Frankfurt
Richard L. Franklin
Michael Frede
Gottlob Frege
Peter Geach
Edmund Gettier
Carl Ginet
Alvin Goldman
Gorgias
Nicholas St. John Green
H.Paul Grice
Ian Hacking
Ishtiyaque Haji
Stuart Hampshire
W.F.R.Hardie
Sam Harris
William Hasker
R.M.Hare
Georg W.F. Hegel
Martin Heidegger
Heraclitus
R.E.Hobart
Thomas Hobbes
David Hodgson
Shadsworth Hodgson
Baron d'Holbach
Ted Honderich
Pamela Huby
David Hume
Ferenc Huoranszki
William James
Lord Kames
Robert Kane
Immanuel Kant
Tomis Kapitan
Walter Kaufmann
Jaegwon Kim
William King
Hilary Kornblith
Christine Korsgaard
Saul Kripke
Thomas Kuhn
Andrea Lavazza
Christoph Lehner
Keith Lehrer
Gottfried Leibniz
Jules Lequyer
Leucippus
Michael Levin
George Henry Lewes
C.I.Lewis
David Lewis
Peter Lipton
C. Lloyd Morgan
John Locke
Michael Lockwood
E. Jonathan Lowe
John R. Lucas
Lucretius
Alasdair MacIntyre
Ruth Barcan Marcus
James Martineau
Storrs McCall
Hugh McCann
Colin McGinn
Michael McKenna
Brian McLaughlin
John McTaggart
Paul E. Meehl
Uwe Meixner
Alfred Mele
Trenton Merricks
John Stuart Mill
Dickinson Miller
G.E.Moore
Thomas Nagel
Otto Neurath
Friedrich Nietzsche
John Norton
P.H.Nowell-Smith
Robert Nozick
William of Ockham
Timothy O'Connor
Parmenides
David F. Pears
Charles Sanders Peirce
Derk Pereboom
Steven Pinker
Plato
Karl Popper
Porphyry
Huw Price
H.A.Prichard
Protagoras
Hilary Putnam
Willard van Orman Quine
Frank Ramsey
Ayn Rand
Michael Rea
Thomas Reid
Charles Renouvier
Nicholas Rescher
C.W.Rietdijk
Richard Rorty
Josiah Royce
Bertrand Russell
Paul Russell
Gilbert Ryle
Jean-Paul Sartre
Kenneth Sayre
T.M.Scanlon
Moritz Schlick
Arthur Schopenhauer
John Searle
Wilfrid Sellars
Alan Sidelle
Ted Sider
Henry Sidgwick
Walter Sinnott-Armstrong
J.J.C.Smart
Saul Smilansky
Michael Smith
Baruch Spinoza
L. Susan Stebbing
Isabelle Stengers
George F. Stout
Galen Strawson
Peter Strawson
Eleonore Stump
Francisco Suárez
Richard Taylor
Teilhard de Chardin
Kevin Timpe
Mark Twain
Peter Unger
Peter van Inwagen
Manuel Vargas
John Venn
Kadri Vihvelin
Voltaire
G.H. von Wright
David Foster Wallace
R. Jay Wallace
W.G.Ward
Ted Warfield
Roy Weatherford
C.F. von Weizsäcker
William Whewell
Alfred North Whitehead
David Widerker
David Wiggins
Bernard Williams
Timothy Williamson
Ludwig Wittgenstein
Susan Wolf

Scientists

Michael Arbib
Walter Baade
Bernard Baars
Jeffrey Bada
Leslie Ballentine
Gregory Bateson
John S. Bell
Mara Beller
Charles Bennett
Ludwig von Bertalanffy
Susan Blackmore
Margaret Boden
David Bohm
Niels Bohr
Ludwig Boltzmann
Emile Borel
Max Born
Satyendra Nath Bose
Walther Bothe
Hans Briegel
Leon Brillouin
Stephen Brush
Henry Thomas Buckle
S. H. Burbury
Donald Campbell
Anthony Cashmore
Eric Chaisson
Gregory Chaitin
Jean-Pierre Changeux
Arthur Holly Compton
John Conway
John Cramer
Francis Crick
E. P. Culverwell
Antonio Damasio
Olivier Darrigol
Charles Darwin
Richard Dawkins
Terrence Deacon
Lüder Deecke
Richard Dedekind
Louis de Broglie
Stanislas Dehaene
Max Delbrück
Abraham de Moivre
Paul Dirac
Hans Driesch
John Eccles
Arthur Stanley Eddington
Gerald Edelman
Paul Ehrenfest
Albert Einstein
Hugh Everett, III
Franz Exner
Richard Feynman
R. A. Fisher
David Foster
Joseph Fourier
Philipp Frank
Steven Frautschi
Edward Fredkin
Lila Gatlin
Michael Gazzaniga
GianCarlo Ghirardi
J. Willard Gibbs
Nicolas Gisin
Paul Glimcher
Thomas Gold
A. O. Gomes
Brian Goodwin
Joshua Greene
Jacques Hadamard
Mark Hadley
Patrick Haggard
J. B. S. Haldane
Stuart Hameroff
Augustin Hamon
Sam Harris
Hyman Hartman
John-Dylan Haynes
Donald Hebb
Martin Heisenberg
Werner Heisenberg
John Herschel
Art Hobson
Jesper Hoffmeyer
E. T. Jaynes
William Stanley Jevons
Roman Jakobson
Pascual Jordan
Ruth E. Kastner
Stuart Kauffman
Martin J. Klein
William R. Klemm
Christof Koch
Simon Kochen
Hans Kornhuber
Stephen Kosslyn
Ladislav Kovàč
Leopold Kronecker
Rolf Landauer
Alfred Landé
Pierre-Simon Laplace
David Layzer
Joseph LeDoux
Benjamin Libet
Seth Lloyd
Hendrik Lorentz
Josef Loschmidt
Ernst Mach
Donald MacKay
Henry Margenau
James Clerk Maxwell
Ernst Mayr
John McCarthy
Warren McCulloch
George Miller
Stanley Miller
Ulrich Mohrhoff
Jacques Monod
Emmy Noether
Alexander Oparin
Abraham Pais
Howard Pattee
Wolfgang Pauli
Massimo Pauri
Roger Penrose
Steven Pinker
Colin Pittendrigh
Max Planck
Susan Pockett
Henri Poincaré
Daniel Pollen
Ilya Prigogine
Hans Primas
Adolphe Quételet
Jürgen Renn
Juan Roederer
Jerome Rothstein
David Ruelle
Tilman Sauer
Jürgen Schmidhuber
Erwin Schrödinger
Aaron Schurger
Claude Shannon
Charles Sherrington
David Shiang
Herbert Simon
Dean Keith Simonton
B. F. Skinner
Lee Smolin
Ray Solomonoff
Roger Sperry
John Stachel
Henry Stapp
Tom Stonier
Antoine Suarez
Leo Szilard
Max Tegmark
William Thomson (Kelvin)
Giulio Tononi
Peter Tse
Vlatko Vedral
Heinz von Foerster
John von Neumann
John B. Watson
Daniel Wegner
Steven Weinberg
Paul A. Weiss
John Wheeler
Wilhelm Wien
Norbert Wiener
Eugene Wigner
E. O. Wilson
Stephen Wolfram
H. Dieter Zeh
Ernst Zermelo
Wojciech Zurek
Konrad Zuse
Fritz Zwicky

Presentations

Biosemiotics
Free Will
Mental Causation
James Symposium

 
Downward Causation
Belief in causality is deeply held by many philosophers and scientists. Many say it is the basis for all thought and knowledge of the external world. The idea that every event has a cause leads to the view of causal closure or causal determinism. The simplest form of physical determinism is the Laplacian view that given the positions and velocities of all the fundamental particles in the world, together with the laws of nature, that there is only one possible future.

Reductionism is the view that material particles and the physical forces between them, which are supposed to be mathematically analytical, can explain all that happens in the world. Chemistry is thought to be reducible to physics, biology reducible to chemistry, psychology (via neuroscience) reducible to biology, and mind/brain (or cognitive science) reducible to psychology. All these causal relations are called "bottom-up."

The finest details of brain events are thought by some to be a consequence of motions of the material particles that comprise the brain. Reductionism implies that mind is an epiphenomenon, or worse, just an illusion. The reductionist idea that everything is the consequence of "bottom up" physical causes is often called eliminative materialism.

By contrast, downward causation is a kind of holism that denies reductionism. "Wholes" can enforce constraints on their "parts" to make them move in ways that may be unpredictable, even given the complete information about the parts (ultimately the atoms and molecules) along with the complete information about the state of the universe outside those parts.

Downward causation is closely related to the concepts of emergence, self-organization, and supervenience. It has become very popular in the study of complex physical systems which exhibit a kind of self-organization and emergence of visible structures when the systems are far from equilibrium conditions.

Most modern discussions of emergence and self-organization in hierarchical systems start with the early 1950's work of Ilya Prigogine on dissipative structures, physical and chemical systems that are far from equilibrium, through which there is a steady flow of matter and energy.

Despite the normal tendency to chaos (the second law of thermodynamics and increasing entropy), these dissipative systems develop relatively stable visible structures, such as Bénard convection cells and Turing autocatalytic reactions that show space-dependent, steady-state processes stable against perturbations. These visible structures reduce the entropy locally. Prigogine's discovery of such "order out of chaos" in physical systems is widely cited as evidence of emergent properties in complex adaptive systems. It lies at the heart of modern complexity theory and chaos theory.

The idea that the emergent structures exert downward causal control on their molecular components was perhaps first articulated by Roger Sperry in 1965. Sperry cites a wheel rolling downhill as an example of downward causal control. The atoms and molecules are caught up and overpowered by the higher properties of the whole. He says that he "worked the new mind-brain ideas into a discussion of holist-reductionist issues, emergent downward control. and ‘nothing but’ fallacies in human value systems, in a broad refutation of the then prevalent ’mechanistic, materialistic, behavioristic, fatalistic, reductionistic view of the 'nature of mind and psyche’."

But Sperry's downward control over atoms is a gross and "dumb" sort of control. What British emergentists were looking for, according to Brian McLaughlin, is a fine and "intelligent" control over individual atoms and molecules of the kind seen in biological systems, which Erwin Schrödinger called "order out of order."

In 1974 Donald Campbell coined the phrase "downward causation" and Campbell is widely cited in the current literature as the main source of the idea.

Some biologists (e.g., Ernst Mayr) have argued that biology is not reducible to physics and chemistry, although it is completely consistent with the laws of physics. Even the apparent violation of the second law of thermodynamics has been explained because living beings are open systems exchanging matter, energy, and especially information with their environment. In particular, biological systems have a history that physical systems do not, they store knowledge that allows them to be cognitive systems, and they process information at a very fine (atomic/molecular) level.

Information is neither matter nor energy, but it needs matter for its embodiment and energy for its communication.

A living being is a form through which passes a flow of matter and energy (with low or "negative" entropy, the physical equivalent of information). Genetic information is used to build the information-rich matter into an overall information structure that contains a very large number of hierarchically organized information structures. Emergent higher levels exert downward causation on the contents of the lower levels.

The problem of mental causation is a specific case of downward causal control that is central to the philosophy of mind.

The idea that minds have powers "over and above" the known physical, chemical, and biological laws is sometimes called "mentalism." It is related to the idea of "vitalism," that biology might involve new laws that cannot be reduced to "nothing but" the laws of physics.

But when biologists look closely at the "vital" processes going on in our cells, they see nothing but information processing and "self-assembly" going on at a rate that makes our best computers and manufacturing robots pale by comparison.

Examples of Downward Causation
  • When the earth turns, or revolves about the sun, or travels with the sun through the spiral arms of our galaxy, everything on earth is carried along with it. The planets were the paradigm example of deterministic causation that led philosophers and scientists to assume that every motion in the universe must be similarly caused.

  • When a wheel rolls, its component molecules roll along with it. This is Roger Sperry's original example of "downward causal control."

  • When the water in a turbulent cell far from equilibrium is convected upward by the heat below, it drags along most of the water molecules that compose it. This is Ilya Prigogine's prime example of a "dissipative structure" exhibiting emergent "order out of chaos."

  • When a ribosome assembles 330 amino acids in four symmetric polypeptide chains (globins), each globin traps an iron atom in a heme group at the center to form the hemoglobin protein. This is downward causal control of the amino acids, the heme groups, and the iron atoms by the ribosome. This is an example of Erwin Schrödinger's "order out of order," life "feeding on the negative entropy" of digested food.

    When 200 million of the 25 trillion red blood cells in the human body die each second, in each of 200 million new cells 100 million hemoglobins cell must be assembled. With the order of a few thousand bytes of information in each hemoglobin, this is 10 thousand x 100 million x 200 million = 2 x 1020 bits of information per second, a million times more information processing than today's fastest computer CPU.

  • When a ribosome produces a protein that does not fold properly, a chaperone enzyme, shaped like a tiny trash can, opens its lid and captures the protein. It then closes the lid and squeezes the protein. Upon release, the protein then frequently folds properly. If it does not, the chaperone captures it again and disassembles it back to its amino acids. This is cellular-level downward causation by a huge macromolecular cellular substructure. It is also an example of biological error detection and correction.

  • When a single neuron fires, the active potential rapidly changes the concentration of sodium (Na+) ions inside the cell and potassium (K+) ions outside the cell. Within milliseconds, thousands of sodium-potassium ion channels in the thin lipid bilayer of the cell wall must move billions of those ions from one side to the other to restore the chemical potential needed to support neuron firing. They do it with exquisite biological machinery that exerts downward causation on the ions, powered by ATP energy carriers. Random quantum indeterministic motions of the ions drive them near the pump opening, and quantum collaborative forces capture them in a lock-and-key structure as shown in the animation.

    The ion pump is as close to a Maxwell demon as we are ever likely to see.

  • When many motor neurons fire, innnervating excitatory post-synaptic potentials (EPSPs) that travel down through the thalamus and the spinal cord and cause muscles to contract, that is as literal as downward causation gets in the body.

  • When the mind decides to move the body, that mental causation is realized as downward causation.

  • Who saw this first? Consider the great Latin poet, philosopher, and scientist
    Titus Lucretius Carus, who described downward causation thus:
    Therefore when the mind so bestirs itself that it wishes to go and to step forwards, at once it strikes all the mass of spirit that is distributed abroad through limbs and frame in all the body. And this is easy to do, since the spirit is held in close combination with it. The spirit in its turn strikes the body, and so the whole mass is gradually pushed on and moves...

    Again, there is no need to be surprised that elements so small can sway so large a body and turn about our whole weight. For indeed the wind, which is thin and has a fine substance, drives and pushes a great ship with mighty momentum, and one hand rules it however fast it may go, and one rudder steers it in any direction; and a machine by its blocks and treadwheels moves many bodies of great weight and uplifts them with small effort.

  • When the helmsman turns the wheel of a great sailing ship, he has downward causal control over all the matter of that great ship.

  • When a philosopher rearranges and communicates ideas, verbally in lectures, or as written words in a published paper, or as the bits of information in a computer memory, this is "information out of order."

For Teachers
For Scholars
"We must admit that the mind of each one of our greatest geniuses — Aristotle, Kant or Leonardo, Goethe or Beethoven, Dante or Shakespeare — even at the moment of its highest flights of thought or in the most profound inner workings of the soul, was subject to the causal fiat and was a instrument in the hands of an almighty law which governs the world." Max Planck, Where Is Science Going, p.156.

[In Existentialism, the will condemns all the unchosen alternatives to nothingness as it grants being to the one chosen.]


Chapter 3.7 - The Ergod Chapter 4.2 - The History of Free Will
Part Three - Value Part Five - Problems
Normal | Teacher | Scholar