Philosophers
Mortimer Adler Rogers Albritton Alexander of Aphrodisias Samuel Alexander William Alston Anaximander G.E.M.Anscombe Anselm Louise Antony Thomas Aquinas Aristotle David Armstrong Harald Atmanspacher Robert Audi Augustine J.L.Austin A.J.Ayer Alexander Bain Mark Balaguer Jeffrey Barrett William Barrett William Belsham Henri Bergson George Berkeley Isaiah Berlin Richard J. Bernstein Bernard Berofsky Robert Bishop Max Black Susanne Bobzien Emil du Bois-Reymond Hilary Bok Laurence BonJour George Boole Émile Boutroux Daniel Boyd F.H.Bradley C.D.Broad Michael Burke Jeremy Butterfield Lawrence Cahoone C.A.Campbell Joseph Keim Campbell Rudolf Carnap Carneades Nancy Cartwright Gregg Caruso Ernst Cassirer David Chalmers Roderick Chisholm Chrysippus Cicero Tom Clark Randolph Clarke Samuel Clarke Anthony Collins Antonella Corradini Diodorus Cronus Jonathan Dancy Donald Davidson Mario De Caro Democritus Daniel Dennett Jacques Derrida René Descartes Richard Double Fred Dretske John Dupré John Earman Laura Waddell Ekstrom Epictetus Epicurus Austin Farrer Herbert Feigl Arthur Fine John Martin Fischer Frederic Fitch Owen Flanagan Luciano Floridi Philippa Foot Alfred Fouilleé Harry Frankfurt Richard L. Franklin Bas van Fraassen Michael Frede Gottlob Frege Peter Geach Edmund Gettier Carl Ginet Alvin Goldman Gorgias Nicholas St. John Green H.Paul Grice Ian Hacking Ishtiyaque Haji Stuart Hampshire W.F.R.Hardie Sam Harris William Hasker R.M.Hare Georg W.F. Hegel Martin Heidegger Heraclitus R.E.Hobart Thomas Hobbes David Hodgson Shadsworth Hodgson Baron d'Holbach Ted Honderich Pamela Huby David Hume Ferenc Huoranszki Frank Jackson William James Lord Kames Robert Kane Immanuel Kant Tomis Kapitan Walter Kaufmann Jaegwon Kim William King Hilary Kornblith Christine Korsgaard Saul Kripke Thomas Kuhn Andrea Lavazza Christoph Lehner Keith Lehrer Gottfried Leibniz Jules Lequyer Leucippus Michael Levin Joseph Levine George Henry Lewes C.I.Lewis David Lewis Peter Lipton C. Lloyd Morgan John Locke Michael Lockwood Arthur O. Lovejoy E. Jonathan Lowe John R. Lucas Lucretius Alasdair MacIntyre Ruth Barcan Marcus Tim Maudlin James Martineau Nicholas Maxwell Storrs McCall Hugh McCann Colin McGinn Michael McKenna Brian McLaughlin John McTaggart Paul E. Meehl Uwe Meixner Alfred Mele Trenton Merricks John Stuart Mill Dickinson Miller G.E.Moore Thomas Nagel Otto Neurath Friedrich Nietzsche John Norton P.H.Nowell-Smith Robert Nozick William of Ockham Timothy O'Connor Parmenides David F. Pears Charles Sanders Peirce Derk Pereboom Steven Pinker U.T.Place Plato Karl Popper Porphyry Huw Price H.A.Prichard Protagoras Hilary Putnam Willard van Orman Quine Frank Ramsey Ayn Rand Michael Rea Thomas Reid Charles Renouvier Nicholas Rescher C.W.Rietdijk Richard Rorty Josiah Royce Bertrand Russell Paul Russell Gilbert Ryle Jean-Paul Sartre Kenneth Sayre T.M.Scanlon Moritz Schlick John Duns Scotus Arthur Schopenhauer John Searle Wilfrid Sellars David Shiang Alan Sidelle Ted Sider Henry Sidgwick Walter Sinnott-Armstrong Peter Slezak J.J.C.Smart Saul Smilansky Michael Smith Baruch Spinoza L. Susan Stebbing Isabelle Stengers George F. Stout Galen Strawson Peter Strawson Eleonore Stump Francisco Suárez Richard Taylor Kevin Timpe Mark Twain Peter Unger Peter van Inwagen Manuel Vargas John Venn Kadri Vihvelin Voltaire G.H. von Wright David Foster Wallace R. Jay Wallace W.G.Ward Ted Warfield Roy Weatherford C.F. von Weizsäcker William Whewell Alfred North Whitehead David Widerker David Wiggins Bernard Williams Timothy Williamson Ludwig Wittgenstein Susan Wolf Scientists David Albert Michael Arbib Walter Baade Bernard Baars Jeffrey Bada Leslie Ballentine Marcello Barbieri Gregory Bateson Horace Barlow John S. Bell Mara Beller Charles Bennett Ludwig von Bertalanffy Susan Blackmore Margaret Boden David Bohm Niels Bohr Ludwig Boltzmann Emile Borel Max Born Satyendra Nath Bose Walther Bothe Jean Bricmont Hans Briegel Leon Brillouin Stephen Brush Henry Thomas Buckle S. H. Burbury Melvin Calvin Donald Campbell Sadi Carnot Anthony Cashmore Eric Chaisson Gregory Chaitin Jean-Pierre Changeux Rudolf Clausius Arthur Holly Compton John Conway Jerry Coyne John Cramer Francis Crick E. P. Culverwell Antonio Damasio Olivier Darrigol Charles Darwin Richard Dawkins Terrence Deacon Lüder Deecke Richard Dedekind Louis de Broglie Stanislas Dehaene Max Delbrück Abraham de Moivre Bernard d'Espagnat Paul Dirac Hans Driesch John Eccles Arthur Stanley Eddington Gerald Edelman Paul Ehrenfest Manfred Eigen Albert Einstein George F. R. Ellis Hugh Everett, III Franz Exner Richard Feynman R. A. Fisher David Foster Joseph Fourier Philipp Frank Steven Frautschi Edward Fredkin Augustin-Jean Fresnel Benjamin Gal-Or Howard Gardner Lila Gatlin Michael Gazzaniga Nicholas Georgescu-Roegen GianCarlo Ghirardi J. Willard Gibbs James J. Gibson Nicolas Gisin Paul Glimcher Thomas Gold A. O. Gomes Brian Goodwin Joshua Greene Dirk ter Haar Jacques Hadamard Mark Hadley Patrick Haggard J. B. S. Haldane Stuart Hameroff Augustin Hamon Sam Harris Ralph Hartley Hyman Hartman Jeff Hawkins John-Dylan Haynes Donald Hebb Martin Heisenberg Werner Heisenberg John Herschel Basil Hiley Art Hobson Jesper Hoffmeyer Don Howard John H. Jackson William Stanley Jevons Roman Jakobson E. T. Jaynes Pascual Jordan Eric Kandel Ruth E. Kastner Stuart Kauffman Martin J. Klein William R. Klemm Christof Koch Simon Kochen Hans Kornhuber Stephen Kosslyn Daniel Koshland Ladislav Kovàč Leopold Kronecker Rolf Landauer Alfred Landé Pierre-Simon Laplace Karl Lashley David Layzer Joseph LeDoux Gerald Lettvin Gilbert Lewis Benjamin Libet David Lindley Seth Lloyd Werner Loewenstein Hendrik Lorentz Josef Loschmidt Alfred Lotka Ernst Mach Donald MacKay Henry Margenau Owen Maroney David Marr Humberto Maturana James Clerk Maxwell Ernst Mayr John McCarthy Warren McCulloch N. David Mermin George Miller Stanley Miller Ulrich Mohrhoff Jacques Monod Vernon Mountcastle Emmy Noether Donald Norman Travis Norsen Alexander Oparin Abraham Pais Howard Pattee Wolfgang Pauli Massimo Pauri Wilder Penfield Roger Penrose Steven Pinker Colin Pittendrigh Walter Pitts Max Planck Susan Pockett Henri Poincaré Daniel Pollen Ilya Prigogine Hans Primas Zenon Pylyshyn Henry Quastler Adolphe Quételet Pasco Rakic Nicolas Rashevsky Lord Rayleigh Frederick Reif Jürgen Renn Giacomo Rizzolati A.A. Roback Emil Roduner Juan Roederer Jerome Rothstein David Ruelle David Rumelhart Robert Sapolsky Tilman Sauer Ferdinand de Saussure Jürgen Schmidhuber Erwin Schrödinger Aaron Schurger Sebastian Seung Thomas Sebeok Franco Selleri Claude Shannon Charles Sherrington Abner Shimony Herbert Simon Dean Keith Simonton Edmund Sinnott B. F. Skinner Lee Smolin Ray Solomonoff Roger Sperry John Stachel Henry Stapp Tom Stonier Antoine Suarez Leo Szilard Max Tegmark Teilhard de Chardin Libb Thims William Thomson (Kelvin) Richard Tolman Giulio Tononi Peter Tse Alan Turing C. S. Unnikrishnan Francisco Varela Vlatko Vedral Vladimir Vernadsky Mikhail Volkenstein Heinz von Foerster Richard von Mises John von Neumann Jakob von Uexküll C. H. Waddington John B. Watson Daniel Wegner Steven Weinberg Paul A. Weiss Herman Weyl John Wheeler Jeffrey Wicken Wilhelm Wien Norbert Wiener Eugene Wigner E. O. Wilson Günther Witzany Stephen Wolfram H. Dieter Zeh Semir Zeki Ernst Zermelo Wojciech Zurek Konrad Zuse Fritz Zwicky Presentations Biosemiotics Free Will Mental Causation James Symposium |
Daniel Koshland, Jr.
Daniel E. Koshland was an American biochemist, a professor at the University of California, Berkeley, and from 1985 to 1995 the editor of Science magazine, a publication of the American Association for the Advancement of Science, of which Koshland was a member.
Koshland's work included a study of bacterial chemotaxis, how single-celled organisms moving through the environment can sense temperature and chemical composition gradients. If nutrients are increasing in the direction of motion, or others conditions are more favorable, the bacterium continues. If not, the rotation direction of its tiny flagella reverse. Rotation of the flagella counter-clockwise drives the bacterium straight ahead. Flagella rotating clockwise cause the bacterium to tumble and face in random new directions. Their sensors and motion capability let them make two-stage decisions about which way to go. As the bacterium moves, receptors on the bacterium surface detect gradients of chemicals. When the gradient indicates “food ahead” or “toxic behind,” the bacterium keeps going. If the gradients are not promising, the bacterium reverses the flagella rotation direction, which makes it tumble again. This combination of randomizing its direction (generating random possibilities), followed by an adequately determined decision to continue (or not) is a primitive version of the two-stage model of human free will.
References
Bacterial Chemotaxis as a Model Behavioural System. New York: Raven Press.
In 2002 Koshland offered his definition of life based on "seven pillars."
The first pillar of life is a PROGRAM. By program I mean an organized plan that describes both the ingredients themselves and the kinetics of the interactions among ingredients as the living system persists through time. For the living systems we observe on Earth, this program is implemented by the DNA that encodes the genes of Earth's organisms and that is replicated from generation to generation, with small changes but always with the overall plan intact. The genes in turn encode for chemicals—the proteins, nucleic acids, etc.—that carry out the reactions in living systems. It is in the DNA that the program is summarized and maintained for life on Earth.
The second pillar of life is IMPROVISATION. Because a living system will inevitably be a small fraction of the larger universe in which it lives, it will not be able to control all the changes and vicissitudes of its environment, so it must have some way to change its program. If, for example, a warm period changes to an ice age so that the program is less effective, the system will need to change its program to survive. In our current living systems, such changes can be achieved by a process of mutation plus selection that allows programs to be optimized for new environmental challenges that are to be faced.
The third of the pillars of life is COMPARTMENTALIZATION. All the organisms that we consider living are confined to a limited volume, surrounded by a surface that we call a membrane or skin that keeps the ingredients in a defined volume and keeps deleterious chemicals—toxic or diluting—on the outside. Moreover, as organisms become large, they are divided into smaller compartments, which we call cells (or organs, that is, groups of cells), in order to centralize and specialize certain functions within the larger organism. The reason for compartmentalization is that life depends on the reaction kinetics of its ingredients, the substrates and catalysts (enzymes) of the living system. Those kinetics depend on the concentrations of the ingredients. Simple dilution of the contents of a cell kills it because of the decrease in concentration of the contents, even though all the chemicals remain as active as before dilution. So a container is essential to maintain the concentrations and arrangement of the interior of the living organism and to provide protection from the outside.
The fourth pillar of life is ENERGY. Life as we know it involves movement—of chemicals, of the body, of components of the body—and a system with net movement cannot be in equilibrium. It must be an open and, in this case, metabolizing system. Many chemical reactions are going on inside the cell, and molecules are coming in from the outer environment—O2, CO2, metals, etc. The organism's system is parsimonious; many of the chemicals are recycled multiple times in an organism's lifetime (CO2, for example, is consumed in photosynthesis and then produced by oxidation in the system), but originally they enter the living system from the outside, so thermodynamicists call this an open system. Because of the many reactions and the fact that there is some gain of entropy (the mechanical analogy would be friction), there must be a compensation to keep the system going and that compensation requires a continuous source of energy. The major source of energy in Earth's biosphere is the Sun—although life on Earth gets a little energy from other sources such as the internal heat of the Earth—so the system can continue indefinitely by cleverly recycling chemicals as long as it has the added energy of the Sun to compensate for its entropy changes.
The fifth pillar is REGENERATION. Because a metabolizing system composed of catalysts (enzymes) and chemicals (metabolites) in a container is constantly reacting, it will inevitably be associated with some thermodynamic losses. Because those losses will eventually change the kinetics of the program adversely, there must be a plan to compensate for those losses, that is, a regeneration system. One such regeneration system is the diffusion or active transport of chemicals into the living organism. For example, CO2 and its products replace the losses inevitable in chemical reactions. Another system for regeneration is the constant resynthesis of the constituents of the living system that are subject to wear and tear. For example, the heart muscle of a normal human beats 60 times a minute—3600 times an hour, 1,314,000 times a year, 91,980,000 times a lifetime. No man-made material has been found that would not fatigue and collapse under such use, which is why artificial hearts have such a short utilization span. The living system, however, continually resynthesizes and replaces its heart muscle proteins as they suffer degradation; the body does the same for other constituents—its lung sacs, kidney proteins, brain synapses, etc.
This is not the only way the living system regenerates. The constant resynthesis of its proteins and body constituents is not quite perfect, so the small loss for each regeneration in the short run becomes a larger loss overall for all the processes in the long run, adding up to what we call aging. So living systems, at least the ones we know, use a clever trick to perfect the regeneration process—that is, they start over. Starting over can be a cell dividing, in the case of Escherichia coli, or the birth of an infant for Homo sapiens. By beginning a new generation, the infant starts from scratch, and all the chemical ingredients, programs, and other constituents go back to the beginning to correct the inevitable decline of a continuously functioning metabolizing system
The sixth pillar is ADAPTABILITY. Improvisation is a form of adaptability, but is too slow for many of the environmental hazards that a living organism must face. For example, a human that puts a hand into a fire has a painful experience that might be selected against in evolution—but the individual needs to withdraw his hand from the fire immediately to live appropriately thereafter. That behavioral response to pain is essential to survival and is a fundamental response of living systems that we call feedback. Our bodies respond to depletion of nutrients (energy supplies) with hunger, which causes us to seek new food, and our feedback then prevents our eating to an excess of nutrients (that is, beyond satiety) by losing appetite and eating less. Walking long distances on bare feet leads to calluses on one's feet or the acquisition of shoes to protect them. These behavioral manifestations of adaptability are a development of feedback and feedforward responses at the molecular level and are responses of living systems that allow survival in quickly changing environments. Adaptability could arguably include improvisation (pillar number 2), but improvisation is a mechanism to change the fundamental program, whereas adaptability (pillar number 6) is a behavioral response that is part of the program. Just as these two necessities are handled by different mechanisms in our Earth-bound system, I believe they will be different concepts handled by different mechanisms in any newly devised or newly discovered system.
Finally, and far from the least, is the seventh pillar, SECLUSION. By seclusion, in this context, I mean something rather like privacy in the social world of our universe. It is essential for a metabolizing system with many reactions going on at the same time, to prevent the chemicals in pathway 1 (A→B→C→D for example) from being metabolized by the catalysts of pathway 2 (R→S→T→U). Our living system does this by a crucial property of life—the specificity of enzymes that work only on the molecules for which they were designed and are not confused by collisions with miscellaneous molecules from other pathways. In a sense this property is like insulating an electrically conducting wire so it isn't short-circuited by contact with another wire. The seclusion of the biological system is not absolute. It can be interrupted by feedback and feedforward messages, but only messages that have specifically arranged conduits can be received. There is also specificity in DNA and RNA interactions. It is this seclusion of pathways that allows thousands of reactions to occur with high efficiency in the tiny volumes of a living cell, while simultaneously receiving selective signals that ensure an appropriate response to environmental changes.
These seven pillars of life—P(rogram), I(mprovisation), C(ompartmentalization), E(nergy), R(egeneration), A(daptability), S(eclusion), PICERAS, for short—are the fundamental principles on which a living system is based. Further examination makes it clear how life on Earth has implemented these principles. But these mechanisms may not be perfect and might be improved. For example, the regeneration system used by life on Earth is imperfect for any particular individual and hence requires a “starting over.” That mechanism in turn requires a device for heredity to maintain continuity in the program for the next generation. Suppose the proteins, hormones, and cells had a better feedback system so that the gradual decay with age was constantly being corrected by feedback. Then, the need to start over would disappear. That would eliminate the death and hereditary needs of the current system. It would also mean that a single individual could live forever without aging. There would be a problem, however, because the starting over (death and a new birth) provide an opportunity for improvisations (mutations in the DNA), and that pillar would need to be replaced by a new mechanism to achieve the same advantage.
Such dilemmas make us confront another reality. At the present time the way in which mutation and selection (survival of the fittest) has worked over evolutionary time no longer seems to apply to Homo sapiens. We have become more compassionate, less demanding. Perhaps a newer approach—longer life and deliberate changes in the program by a supreme council of wise Solomons—could be substituted for the cruder survival-of-the-fittest scenario. I do not necessarily advocate such a drastic change in the current mechanism of improvisation, which has served us well over the centuries, but am only pointing out that there is the possibility to change particular mechanisms as long as we maintain the pillars.
This listing of the seven foundations of life allows us to think differently about the goals and therapeutic approaches of current research. The adaptability concept, for example, is certainly one in which better mechanisms could be devised, probably by adjusting existing mechanisms to allow these to work more effectively in real living systems. For example, the eye can adapt to outside light levels that range over 10 orders of magnitude (1010), whereas the other organs of the human body have much smaller ranges. Perhaps other organs such as the lungs, kidneys, or spleen could be improved so that they would function over larger concentrations of regulators and aging would be less harmful to them.
Thus, the PICERAS principles seem to be necessary for the operation of a living system. Mechanisms to achieve such a system can be varied as long as they satisfy the thermodynamic and kinetic requirements. We have one example, life on Earth, showing how it can be done. It will be interesting to see whether a different, self-consistent set of mechanisms could yield a model with life as an outcome.
Normal | Teacher | Scholar |