Citation for this page in APA citation style.           Close


Philosophers

Mortimer Adler
Rogers Albritton
Alexander of Aphrodisias
Samuel Alexander
William Alston
Anaximander
G.E.M.Anscombe
Anselm
Louise Antony
Thomas Aquinas
Aristotle
David Armstrong
Harald Atmanspacher
Robert Audi
Augustine
J.L.Austin
A.J.Ayer
Alexander Bain
Mark Balaguer
Jeffrey Barrett
William Barrett
William Belsham
Henri Bergson
George Berkeley
Isaiah Berlin
Richard J. Bernstein
Bernard Berofsky
Robert Bishop
Max Black
Susanne Bobzien
Emil du Bois-Reymond
Hilary Bok
Laurence BonJour
George Boole
Émile Boutroux
Daniel Boyd
F.H.Bradley
C.D.Broad
Michael Burke
Lawrence Cahoone
C.A.Campbell
Joseph Keim Campbell
Rudolf Carnap
Carneades
Nancy Cartwright
Gregg Caruso
Ernst Cassirer
David Chalmers
Roderick Chisholm
Chrysippus
Cicero
Tom Clark
Randolph Clarke
Samuel Clarke
Anthony Collins
Antonella Corradini
Diodorus Cronus
Jonathan Dancy
Donald Davidson
Mario De Caro
Democritus
Daniel Dennett
Jacques Derrida
René Descartes
Richard Double
Fred Dretske
John Dupré
John Earman
Laura Waddell Ekstrom
Epictetus
Epicurus
Austin Farrer
Herbert Feigl
Arthur Fine
John Martin Fischer
Frederic Fitch
Owen Flanagan
Luciano Floridi
Philippa Foot
Alfred Fouilleé
Harry Frankfurt
Richard L. Franklin
Bas van Fraassen
Michael Frede
Gottlob Frege
Peter Geach
Edmund Gettier
Carl Ginet
Alvin Goldman
Gorgias
Nicholas St. John Green
H.Paul Grice
Ian Hacking
Ishtiyaque Haji
Stuart Hampshire
W.F.R.Hardie
Sam Harris
William Hasker
R.M.Hare
Georg W.F. Hegel
Martin Heidegger
Heraclitus
R.E.Hobart
Thomas Hobbes
David Hodgson
Shadsworth Hodgson
Baron d'Holbach
Ted Honderich
Pamela Huby
David Hume
Ferenc Huoranszki
Frank Jackson
William James
Lord Kames
Robert Kane
Immanuel Kant
Tomis Kapitan
Walter Kaufmann
Jaegwon Kim
William King
Hilary Kornblith
Christine Korsgaard
Saul Kripke
Thomas Kuhn
Andrea Lavazza
Christoph Lehner
Keith Lehrer
Gottfried Leibniz
Jules Lequyer
Leucippus
Michael Levin
Joseph Levine
George Henry Lewes
C.I.Lewis
David Lewis
Peter Lipton
C. Lloyd Morgan
John Locke
Michael Lockwood
Arthur O. Lovejoy
E. Jonathan Lowe
John R. Lucas
Lucretius
Alasdair MacIntyre
Ruth Barcan Marcus
Tim Maudlin
James Martineau
Nicholas Maxwell
Storrs McCall
Hugh McCann
Colin McGinn
Michael McKenna
Brian McLaughlin
John McTaggart
Paul E. Meehl
Uwe Meixner
Alfred Mele
Trenton Merricks
John Stuart Mill
Dickinson Miller
G.E.Moore
Thomas Nagel
Otto Neurath
Friedrich Nietzsche
John Norton
P.H.Nowell-Smith
Robert Nozick
William of Ockham
Timothy O'Connor
Parmenides
David F. Pears
Charles Sanders Peirce
Derk Pereboom
Steven Pinker
U.T.Place
Plato
Karl Popper
Porphyry
Huw Price
H.A.Prichard
Protagoras
Hilary Putnam
Willard van Orman Quine
Frank Ramsey
Ayn Rand
Michael Rea
Thomas Reid
Charles Renouvier
Nicholas Rescher
C.W.Rietdijk
Richard Rorty
Josiah Royce
Bertrand Russell
Paul Russell
Gilbert Ryle
Jean-Paul Sartre
Kenneth Sayre
T.M.Scanlon
Moritz Schlick
John Duns Scotus
Arthur Schopenhauer
John Searle
Wilfrid Sellars
David Shiang
Alan Sidelle
Ted Sider
Henry Sidgwick
Walter Sinnott-Armstrong
Peter Slezak
J.J.C.Smart
Saul Smilansky
Michael Smith
Baruch Spinoza
L. Susan Stebbing
Isabelle Stengers
George F. Stout
Galen Strawson
Peter Strawson
Eleonore Stump
Francisco Suárez
Richard Taylor
Kevin Timpe
Mark Twain
Peter Unger
Peter van Inwagen
Manuel Vargas
John Venn
Kadri Vihvelin
Voltaire
G.H. von Wright
David Foster Wallace
R. Jay Wallace
W.G.Ward
Ted Warfield
Roy Weatherford
C.F. von Weizsäcker
William Whewell
Alfred North Whitehead
David Widerker
David Wiggins
Bernard Williams
Timothy Williamson
Ludwig Wittgenstein
Susan Wolf

Scientists

David Albert
Michael Arbib
Walter Baade
Bernard Baars
Jeffrey Bada
Leslie Ballentine
Marcello Barbieri
Gregory Bateson
Horace Barlow
John S. Bell
Mara Beller
Charles Bennett
Ludwig von Bertalanffy
Susan Blackmore
Margaret Boden
David Bohm
Niels Bohr
Ludwig Boltzmann
Emile Borel
Max Born
Satyendra Nath Bose
Walther Bothe
Jean Bricmont
Hans Briegel
Leon Brillouin
Stephen Brush
Henry Thomas Buckle
S. H. Burbury
Melvin Calvin
Donald Campbell
Sadi Carnot
Anthony Cashmore
Eric Chaisson
Gregory Chaitin
Jean-Pierre Changeux
Rudolf Clausius
Arthur Holly Compton
John Conway
Jerry Coyne
John Cramer
Francis Crick
E. P. Culverwell
Antonio Damasio
Olivier Darrigol
Charles Darwin
Richard Dawkins
Terrence Deacon
Lüder Deecke
Richard Dedekind
Louis de Broglie
Stanislas Dehaene
Max Delbrück
Abraham de Moivre
Bernard d'Espagnat
Paul Dirac
Hans Driesch
John Eccles
Arthur Stanley Eddington
Gerald Edelman
Paul Ehrenfest
Manfred Eigen
Albert Einstein
George F. R. Ellis
Hugh Everett, III
Franz Exner
Richard Feynman
R. A. Fisher
David Foster
Joseph Fourier
Philipp Frank
Steven Frautschi
Edward Fredkin
Benjamin Gal-Or
Howard Gardner
Lila Gatlin
Michael Gazzaniga
Nicholas Georgescu-Roegen
GianCarlo Ghirardi
J. Willard Gibbs
James J. Gibson
Nicolas Gisin
Paul Glimcher
Thomas Gold
A. O. Gomes
Brian Goodwin
Joshua Greene
Dirk ter Haar
Jacques Hadamard
Mark Hadley
Patrick Haggard
J. B. S. Haldane
Stuart Hameroff
Augustin Hamon
Sam Harris
Ralph Hartley
Hyman Hartman
Jeff Hawkins
John-Dylan Haynes
Donald Hebb
Martin Heisenberg
Werner Heisenberg
John Herschel
Basil Hiley
Art Hobson
Jesper Hoffmeyer
Don Howard
John H. Jackson
William Stanley Jevons
Roman Jakobson
E. T. Jaynes
Pascual Jordan
Eric Kandel
Ruth E. Kastner
Stuart Kauffman
Martin J. Klein
William R. Klemm
Christof Koch
Simon Kochen
Hans Kornhuber
Stephen Kosslyn
Daniel Koshland
Ladislav Kovàč
Leopold Kronecker
Rolf Landauer
Alfred Landé
Pierre-Simon Laplace
Karl Lashley
David Layzer
Joseph LeDoux
Gerald Lettvin
Gilbert Lewis
Benjamin Libet
David Lindley
Seth Lloyd
Werner Loewenstein
Hendrik Lorentz
Josef Loschmidt
Alfred Lotka
Ernst Mach
Donald MacKay
Henry Margenau
Owen Maroney
David Marr
Humberto Maturana
James Clerk Maxwell
Ernst Mayr
John McCarthy
Warren McCulloch
N. David Mermin
George Miller
Stanley Miller
Ulrich Mohrhoff
Jacques Monod
Vernon Mountcastle
Emmy Noether
Donald Norman
Alexander Oparin
Abraham Pais
Howard Pattee
Wolfgang Pauli
Massimo Pauri
Wilder Penfield
Roger Penrose
Steven Pinker
Colin Pittendrigh
Walter Pitts
Max Planck
Susan Pockett
Henri Poincaré
Daniel Pollen
Ilya Prigogine
Hans Primas
Zenon Pylyshyn
Henry Quastler
Adolphe Quételet
Pasco Rakic
Nicolas Rashevsky
Lord Rayleigh
Frederick Reif
Jürgen Renn
Giacomo Rizzolati
A.A. Roback
Emil Roduner
Juan Roederer
Jerome Rothstein
David Ruelle
David Rumelhart
Robert Sapolsky
Tilman Sauer
Ferdinand de Saussure
Jürgen Schmidhuber
Erwin Schrödinger
Aaron Schurger
Sebastian Seung
Thomas Sebeok
Franco Selleri
Claude Shannon
Charles Sherrington
Abner Shimony
Herbert Simon
Dean Keith Simonton
Edmund Sinnott
B. F. Skinner
Lee Smolin
Ray Solomonoff
Roger Sperry
John Stachel
Henry Stapp
Tom Stonier
Antoine Suarez
Leo Szilard
Max Tegmark
Teilhard de Chardin
Libb Thims
William Thomson (Kelvin)
Richard Tolman
Giulio Tononi
Peter Tse
Alan Turing
C. S. Unnikrishnan
Francisco Varela
Vlatko Vedral
Vladimir Vernadsky
Mikhail Volkenstein
Heinz von Foerster
Richard von Mises
John von Neumann
Jakob von Uexküll
C. H. Waddington
John B. Watson
Daniel Wegner
Steven Weinberg
Paul A. Weiss
Herman Weyl
John Wheeler
Jeffrey Wicken
Wilhelm Wien
Norbert Wiener
Eugene Wigner
E. O. Wilson
Günther Witzany
Stephen Wolfram
H. Dieter Zeh
Semir Zeki
Ernst Zermelo
Wojciech Zurek
Konrad Zuse
Fritz Zwicky

Presentations

Biosemiotics
Free Will
Mental Causation
James Symposium
 
Ruth E. Kastner
Ruth Kastner is a physicist and philosopher known for her defense and possibilist extension of John G. Cramer's "Transactional" Interpretation of quantum mechanics.

The transactional interpretation makes no experimental predictions different from standard quantum mechanics. But it does remove some of the puzzling and perhaps unnecessary assumptions that are part of other Interpretations of quantum mechanics. In particular, it denies that conscious observers are needed to cause the "collapse of the wave function" (without which there is no actual "outcome" in the measurement process).

The transactional interpretation adds nothing ad hoc to the standard theory, such as "hidden variables or additional terms to the Schrōdinger equation to force a collapse. It is explicitly indeterministic and non-local. Cramer has explored the radical possibility of sending information between entangled particles faster than the speed of light, as well as causal relations that go backwards in time (retrocausality). And, like Schrōdinger and the decoherence advocates, Cramer denies the existence of particles!

The core physics in the transactional interpretation is a way of looking at photon emissions and absorptions as an exchange of advanced and retarded waves that is based on the 1945 Wheeler-Feynman Absorber Theory of radiation, which was abandoned by Feynman, who went on to develop the Path Integral formulation of quantum mechanics and later, with Julian Schwinger and Sin-Itiro Tomonaga, the theory of Quantum Electrodynamics (QED).

While QED is a powerful theory that allows precise calculations of physical observables such as the motions of photons and electrons and the emission and absorption of a photon by an electron, the transactional interpretation is simply a way of looking at the emission and absorption of photons based on the Wheeler-Feynman attempt to describe the exchange of energy in the classical electromagnetic field as a time-symmetric process.

Wheeler-Feynman proposed adding advanced field potentials (which look like never-seen-in-nature incoming spherical waves converging on light sources) to the normal outgoing spherical waves (with retarded potentials) of classical electrodynamics. Their goal was to symmetrize electrodynamics with respect to time. There is nothing inherent in electromagnetic theory that explains the time asymmetry of radiation propagation (we see outgoing waves only).

Cramer's transactional interpretation describes an electron as sending out probabilistic "offer waves" (OW) to potential absorbers. He adds what he calls "confirmation waves" (CW) incoming to an emitter from the many possible absorbers of an emitted photon. An offer wave is not an actual photon emission, and a confirmation wave is not an actual absorption or "detection" of a photon. But Cramer did see the two waves as connecting events in spacetime. Eventually, one advanced potential confirmation wave "handshakes" with the retarded potential offer wave and produces an actual absorption.

Kastner's Possibilist Transactional Interpretation

The offer wave going out in all directions and the many confirmation waves returning are a sort of subset of the infinite number of virtual photons traveling all possible paths between emitters and absorbers in Feynman's "sum-over-paths" path-integral formulation of quantum mechanics. Kastner proposes to regard the outgoing offer wave and many incoming confirmation waves as "possible" transactions, only one of which indeterministically becomes "actual."

In the information interpretation of the wave function as a "possibilities" function, the possibilities are real in the sense that they can directly interfere with one another. Some thoughts are also real in the sense that they may lead to empirically observable actions.

Kastner is a possibilist who argues that OWs and CWs are possibilities that are "real." She says that they are less real than actual empirically measurable events, but more real than an idea or concept in a person's mind. She suggests the alternate term "potentia," Aristotle's that she found Heisenberg had cited. For Kastner, the possibilities are physically real as compared to merely conceptually possible ideas that are consistent with physical law (for example, David Lewis' "possible worlds." But she says the "possibilities" described by offer and confirmation waves are "sub-empirical" and pre-spatiotemporal (i.e., they have not shown up as actual in spacetime). She calls these "incipient transactions."

Kastner describes actual spacetime events as emergent from the transaction process. She correctly thinks that Niels Bohr and Werner Heisenberg were mistaken to renounce any attempts to visualize a quantum reality underlying quantum phenomena. She describes her "new realism:"

To assume, like Bohr, that a realist understanding must be in terms of the usual "classical," causal account is to limit ourselves to a pseudo-Kantian "category of experience" which is shown to be obsolete by scientific advance, much as Kant's own prescribed "categories" became obsolete when (for example) it was discovered that theories of spacetime had to allow for non-Euclidean forms. The new realist understanding may not be in terms of causal, mechanistic processes. It may instead encompass a fundamental indeterminism at the heart of nature, but one which is well-defined in terms of the conditions under which it occurs - in contrast to prevailing "orthodox" interpretations which suffer from an ill-defined micro/ macro "cut". The new understanding offered here is a rational account, in the sense of being well-defined and self-consistent, even while it lacks certain features, such as determinism and mechanism, that have been traditionally assumed to be requirements for an acceptable scientific account of phenomena.

The subtitle of Kastner's book is ""The Reality of Possibility." She says that her main thesis is that "it is perfectly reasonable to be realist about the subject matter of quantum theory" (p.28). And she calls for a new metaphysical category to describe "not quite actual...possibilities" and the Heisenberg/Aristotle idea of "potentia." 

Heisenberg took a further step in "listening" to quantum theory when he made the following statement: "Atoms and the elementary particles themselves are not real; they form a world of potentialities or possibilities rather than things of the facts."
This assertion was based on the fact that quantum systems such as atoms are generally described by quantum states with a list of possible outcomes, and yet only one of those can be realized upon measurement. I think that he was on to something here, except that I would adjust his characterization of quantum systems as follows: they are real, but not actual. In his terms, they are something not quite actual; they are "potentialities" or "possibilities." Thus my proposal is that quantum mechanics instructs us that we need a new metaphysical category: something more real than the merely abstract (or mental), but less concrete than, in Heisenberg's terms, "facts" or observable phenomena. The list of possible outcomes in the theory is just that: a list of possible ways that things could be, where only one actually becomes a "fact."

Kastner claims that the transactional interpretation removes the "mystery" in John von Neumann's Process 1.

Standard quantum mechanics provides no way to "determine" when or where the wave function "collapses"
the notorious problem with the von Neumann formulation was that there seemed to be no way to determine when, why, or how the pure state should undergo such a transformation. If we take into account the physical process of absorption (i.e., state annihilation), "Process 1" becomes completely non-mysterious. It is just the process whereby the CW are returned to the emitter from all absorbers capable of responding, and a set of incipient transactions is established.

She says that her "possibilities" view provides outcomes that are "clearly defined" where standard quantum theory does not.

Standard quantum mechanics prefers the basis set of eigenfunctions that corresponds to the eigenvalues (e.g., pointer readings, detector states) of the measuring apparatus and the target system
If we adopt the approach that quantum theory tells us about many possibilities arising from interactions between offer waves and confirmation waves, then we gain a clearly defined set of possible outcomes missing in the standard account, which disregards the real physical process of absorption. Recall that one component of the measurement problem is the amplification of the quantum state through interactions with the measuring apparatus, the first observer, the second observer, etc., with no means of deciding when the measurement has been completed. The designation of a stage at which the measurement is "completed" is referred to as the "Heisenberg cut," which is notoriously arbitrary. The arbitrariness is removed once we notice that the original offer wave inevitably encounters one or more absorbers that generate confirmations in response to the offer. It is at that point that set of incipient transactions is established.

The information interpretation of quantum mechanics identifies the Heisenberg/von Neumann "cut" unambiguously as the irreversible creation of stable information in the world (e.g., a detector click or spot on a photographic plate) that may later be observed and constitute a "measurement." For the location of the "cut," see John Bell's possible locations for the shifty split"

Kastner's Explanation of Irreversible Processes
In 2017, Kastner published an article in the journal Entropy, in which she argued correctly that the "possibilities" of her transactional interpretation would result in indeterministic "collapses" of the deterministically evolving wave function.

Many interpretations of quantum mechanics, especially those popular today, say that deterministic evolution of the Schrödinger wave equation makes the theory "unitary." "Unitarity" conserves many expectation values, including the total information at all times. These interpretations deny the "collapse" of the wave function and the appearance of a particle somewhere. Many say that there are no particles, only fields. She writes...

It has been argued that if the non-unitary measurement transition of Von Neumann is a physically real component of quantum theory, then the representation of the system(s) under study by proper mixed states, subject to a probabilistic master equation description relative to a distinguished basis, becomes physically justified. This rectifies a weakness in the usual approach, which helps itself to the convenient basis and accompanying probabilistic description (effectively Pauli’s “random phase assumption”) as a “for all practical purposes” approximation. However, the utility of a probabilistic expression for calculational purposes does not constitute theoretical justification for the probabilistic description, which is needed in order for the “coarse-graining” and resulting entropy increase to describe what is physically occurring in a system. Once we have that justification, through real non-unitary collapse, we have the microscopic irreversibility needed to place the H-theorem on sound physical footing.

According to the TI account of measurement, a quantum system undergoes a real, physical non-unitary state transition based on absorber response, which projects it into a Boolean probability space defined with respect to the observable being measured (typically energy in the context of thermodynamics). Thus the system’s probabilistic description by random variables is justified; the non-unitary measurement transition can be understood as the physical origin of the “initial probability assumption” referred to as puzzling by Sklar. In this model, it ceases to be an assumption and can be seen as describing a physical feature of Nature. In effect, Boltzmann was completely correct about the Stosszahlansatz, even though he could not explain why in classical terms.

In addition, the relativistic level of TI (referred to as RTI) provides a physical reason for the directionality of the irreversibility inherent in the measurement transition at the micro-level, thereby establishing an arrow of time underlying the Second Law. In this respect, the microscopic arrow of time becomes a component of the explanation for the increase in the entropy of closed systems towards what we call “the future”, without the need for an additional postulate of a cosmological low-entropy past.

The present model has been contrasted with the GRW model proposed by Albert, as follows: it does not require any change to the basic Schrödinger evolution, but simply provides a physical account of the non-unitary measurement transition previously formalized by Von Neumann. In addition, the present model takes conserved physical quantities (energy, momentum, etc.) as the preferred eigenbasis of collapse, rather than position as in the GRW theory. This takes into account the fact that position is not an observable at the relativistic level (and time is not an observable at any level). It is also in accordance with the naturally occurring microstates of thermodynamical systems, in which the molecular components are described by distributions over their energies and momenta (i.e., the Boltzmann distribution applies to energies, not positions).

References
On Quantum Collapse as a Basis for the Second Law of Thermodynamics, Entropy, 2017, 19, 106
Normal | Teacher | Scholar