Philosophers
Mortimer Adler Rogers Albritton Alexander of Aphrodisias Samuel Alexander William Alston Anaximander G.E.M.Anscombe Anselm Louise Antony Thomas Aquinas Aristotle David Armstrong Harald Atmanspacher Robert Audi Augustine J.L.Austin A.J.Ayer Alexander Bain Mark Balaguer Jeffrey Barrett William Barrett William Belsham Henri Bergson George Berkeley Isaiah Berlin Richard J. Bernstein Bernard Berofsky Robert Bishop Max Black Susanne Bobzien Emil du Bois-Reymond Hilary Bok Laurence BonJour George Boole Émile Boutroux Daniel Boyd F.H.Bradley C.D.Broad Michael Burke Lawrence Cahoone C.A.Campbell Joseph Keim Campbell Rudolf Carnap Carneades Nancy Cartwright Gregg Caruso Ernst Cassirer David Chalmers Roderick Chisholm Chrysippus Cicero Tom Clark Randolph Clarke Samuel Clarke Anthony Collins Antonella Corradini Diodorus Cronus Jonathan Dancy Donald Davidson Mario De Caro Democritus Daniel Dennett Jacques Derrida René Descartes Richard Double Fred Dretske John Dupré John Earman Laura Waddell Ekstrom Epictetus Epicurus Austin Farrer Herbert Feigl Arthur Fine John Martin Fischer Frederic Fitch Owen Flanagan Luciano Floridi Philippa Foot Alfred Fouilleé Harry Frankfurt Richard L. Franklin Bas van Fraassen Michael Frede Gottlob Frege Peter Geach Edmund Gettier Carl Ginet Alvin Goldman Gorgias Nicholas St. John Green H.Paul Grice Ian Hacking Ishtiyaque Haji Stuart Hampshire W.F.R.Hardie Sam Harris William Hasker R.M.Hare Georg W.F. Hegel Martin Heidegger Heraclitus R.E.Hobart Thomas Hobbes David Hodgson Shadsworth Hodgson Baron d'Holbach Ted Honderich Pamela Huby David Hume Ferenc Huoranszki Frank Jackson William James Lord Kames Robert Kane Immanuel Kant Tomis Kapitan Walter Kaufmann Jaegwon Kim William King Hilary Kornblith Christine Korsgaard Saul Kripke Thomas Kuhn Andrea Lavazza Christoph Lehner Keith Lehrer Gottfried Leibniz Jules Lequyer Leucippus Michael Levin Joseph Levine George Henry Lewes C.I.Lewis David Lewis Peter Lipton C. Lloyd Morgan John Locke Michael Lockwood Arthur O. Lovejoy E. Jonathan Lowe John R. Lucas Lucretius Alasdair MacIntyre Ruth Barcan Marcus Tim Maudlin James Martineau Nicholas Maxwell Storrs McCall Hugh McCann Colin McGinn Michael McKenna Brian McLaughlin John McTaggart Paul E. Meehl Uwe Meixner Alfred Mele Trenton Merricks John Stuart Mill Dickinson Miller G.E.Moore Thomas Nagel Otto Neurath Friedrich Nietzsche John Norton P.H.Nowell-Smith Robert Nozick William of Ockham Timothy O'Connor Parmenides David F. Pears Charles Sanders Peirce Derk Pereboom Steven Pinker U.T.Place Plato Karl Popper Porphyry Huw Price H.A.Prichard Protagoras Hilary Putnam Willard van Orman Quine Frank Ramsey Ayn Rand Michael Rea Thomas Reid Charles Renouvier Nicholas Rescher C.W.Rietdijk Richard Rorty Josiah Royce Bertrand Russell Paul Russell Gilbert Ryle Jean-Paul Sartre Kenneth Sayre T.M.Scanlon Moritz Schlick John Duns Scotus Arthur Schopenhauer John Searle Wilfrid Sellars David Shiang Alan Sidelle Ted Sider Henry Sidgwick Walter Sinnott-Armstrong Peter Slezak J.J.C.Smart Saul Smilansky Michael Smith Baruch Spinoza L. Susan Stebbing Isabelle Stengers George F. Stout Galen Strawson Peter Strawson Eleonore Stump Francisco Suárez Richard Taylor Kevin Timpe Mark Twain Peter Unger Peter van Inwagen Manuel Vargas John Venn Kadri Vihvelin Voltaire G.H. von Wright David Foster Wallace R. Jay Wallace W.G.Ward Ted Warfield Roy Weatherford C.F. von Weizsäcker William Whewell Alfred North Whitehead David Widerker David Wiggins Bernard Williams Timothy Williamson Ludwig Wittgenstein Susan Wolf Scientists David Albert Michael Arbib Walter Baade Bernard Baars Jeffrey Bada Leslie Ballentine Marcello Barbieri Gregory Bateson Horace Barlow John S. Bell Mara Beller Charles Bennett Ludwig von Bertalanffy Susan Blackmore Margaret Boden David Bohm Niels Bohr Ludwig Boltzmann Emile Borel Max Born Satyendra Nath Bose Walther Bothe Jean Bricmont Hans Briegel Leon Brillouin Stephen Brush Henry Thomas Buckle S. H. Burbury Melvin Calvin Donald Campbell Sadi Carnot Anthony Cashmore Eric Chaisson Gregory Chaitin Jean-Pierre Changeux Rudolf Clausius Arthur Holly Compton John Conway Jerry Coyne John Cramer Francis Crick E. P. Culverwell Antonio Damasio Olivier Darrigol Charles Darwin Richard Dawkins Terrence Deacon Lüder Deecke Richard Dedekind Louis de Broglie Stanislas Dehaene Max Delbrück Abraham de Moivre Bernard d'Espagnat Paul Dirac Hans Driesch John Eccles Arthur Stanley Eddington Gerald Edelman Paul Ehrenfest Manfred Eigen Albert Einstein George F. R. Ellis Hugh Everett, III Franz Exner Richard Feynman R. A. Fisher David Foster Joseph Fourier Philipp Frank Steven Frautschi Edward Fredkin Augustin-Jean Fresnel Benjamin Gal-Or Howard Gardner Lila Gatlin Michael Gazzaniga Nicholas Georgescu-Roegen GianCarlo Ghirardi J. Willard Gibbs James J. Gibson Nicolas Gisin Paul Glimcher Thomas Gold A. O. Gomes Brian Goodwin Joshua Greene Dirk ter Haar Jacques Hadamard Mark Hadley Patrick Haggard J. B. S. Haldane Stuart Hameroff Augustin Hamon Sam Harris Ralph Hartley Hyman Hartman Jeff Hawkins John-Dylan Haynes Donald Hebb Martin Heisenberg Werner Heisenberg John Herschel Basil Hiley Art Hobson Jesper Hoffmeyer Don Howard John H. Jackson William Stanley Jevons Roman Jakobson E. T. Jaynes Pascual Jordan Eric Kandel Ruth E. Kastner Stuart Kauffman Martin J. Klein William R. Klemm Christof Koch Simon Kochen Hans Kornhuber Stephen Kosslyn Daniel Koshland Ladislav Kovàč Leopold Kronecker Rolf Landauer Alfred Landé Pierre-Simon Laplace Karl Lashley David Layzer Joseph LeDoux Gerald Lettvin Gilbert Lewis Benjamin Libet David Lindley Seth Lloyd Werner Loewenstein Hendrik Lorentz Josef Loschmidt Alfred Lotka Ernst Mach Donald MacKay Henry Margenau Owen Maroney David Marr Humberto Maturana James Clerk Maxwell Ernst Mayr John McCarthy Warren McCulloch N. David Mermin George Miller Stanley Miller Ulrich Mohrhoff Jacques Monod Vernon Mountcastle Emmy Noether Donald Norman Alexander Oparin Abraham Pais Howard Pattee Wolfgang Pauli Massimo Pauri Wilder Penfield Roger Penrose Steven Pinker Colin Pittendrigh Walter Pitts Max Planck Susan Pockett Henri Poincaré Daniel Pollen Ilya Prigogine Hans Primas Zenon Pylyshyn Henry Quastler Adolphe Quételet Pasco Rakic Nicolas Rashevsky Lord Rayleigh Frederick Reif Jürgen Renn Giacomo Rizzolati A.A. Roback Emil Roduner Juan Roederer Jerome Rothstein David Ruelle David Rumelhart Robert Sapolsky Tilman Sauer Ferdinand de Saussure Jürgen Schmidhuber Erwin Schrödinger Aaron Schurger Sebastian Seung Thomas Sebeok Franco Selleri Claude Shannon Charles Sherrington Abner Shimony Herbert Simon Dean Keith Simonton Edmund Sinnott B. F. Skinner Lee Smolin Ray Solomonoff Roger Sperry John Stachel Henry Stapp Tom Stonier Antoine Suarez Leo Szilard Max Tegmark Teilhard de Chardin Libb Thims William Thomson (Kelvin) Richard Tolman Giulio Tononi Peter Tse Alan Turing C. S. Unnikrishnan Francisco Varela Vlatko Vedral Vladimir Vernadsky Mikhail Volkenstein Heinz von Foerster Richard von Mises John von Neumann Jakob von Uexküll C. H. Waddington John B. Watson Daniel Wegner Steven Weinberg Paul A. Weiss Herman Weyl John Wheeler Jeffrey Wicken Wilhelm Wien Norbert Wiener Eugene Wigner E. O. Wilson Günther Witzany Stephen Wolfram H. Dieter Zeh Semir Zeki Ernst Zermelo Wojciech Zurek Konrad Zuse Fritz Zwicky Presentations Biosemiotics Free Will Mental Causation James Symposium |
E. T. Jaynes
Edwin Thompson Jaynes extended statistical mechanics to connect it to probability theory, Claude Shannon's information theory, and Bayesian statistical inferences.
He championed the work of J. Willard Gibbs, contrasting it to the earlier work of Ludwig Boltzmann.
His 1957 "principle of maximum entropy" or "maxent" says that the probability distribution that best represents the current state of knowledge is the one with largest entropy.
In 1964, Jaynes examined the difference between the Boltzmann and Gibbs formulations of the entropy. They differ, he says, because of different treatments of "interparticle forces."
Normal | Teacher | Scholar
The status of the Gibbs and Boltzmann expressions for entropy has been a matter of some confusion in the literature. We show that: (1) the Gibbs H-function yields the correct entropy as defined in phenomenological thermodynamics; (2) the Boltzmann H yields an "entropy" that is in error by a nonnegligible amount whenever interparticle forces affect thermodynamic properties; (3) Boltzmann's other interpretation of entropy, S = k log W, is consistent with the Gibbs H, and derivable from it; (4) the Boltzmann H theorem does not constitute a demonstration of the second law for dilute gases; (5) the dynamical invariance of the Gibbs H gives a simple proof of the second law for arbitrary interparticle forces; (6) the second law is a special case of a general requirement for any macroscopic process to be experimentally reproducible. Finally, the "anthropomorphic" nature of entropy, on both the statistical and phenomenological levels, is stressed.Jaynes explains that Gibbs entropy is a conserved quantity, for the same reason as the Liouville theorem that conserves the hyper-volume in phase space of a cloud of particles as it traverses its trajectory. Boltzmann entropy increases. We can show that this is a consequence of quantal interactions during particle collisions, which deny the claim of microscopic reversibility and erase the path information in the gas particles that would be needed to support Loschmidt's objection to the Boltzmann H-Theorem In the writer's 1962 Brandeis lectures on statistical mechanics, the Gibbs and Boltzmann expressions for entropy were compared briefly, and it was stated that the Gibbs formula gives the correct entropy, as defined in phenomenological thermodynamics, while the Boltzmann H expression is correct only in the case of an ideal gas. However, there is a school of thought which holds that the Boltzmann expression is directly related to the entropy, and the Gibbs' one simply erroneous. This belief can be traced back to the famous Ehrenfest review article, which severely criticized Gibbs' methods. While it takes very little thought to see that objections to the Gibbs II are immediately refuted by the fact that the Gibbs canonical ensemble does yield correct thermodynamic predictions, discussion with a number of physicists has disclosed a more subtle, but more widespread, misconception. The basic inequality of the Gibbs and Boltzmann H functions, to be derived in Sec. II, was accepted as mathematically correct; but it was thought that, in consequence of the "laws of large numbers" the difference between them would be practically negligible in the limit of large systems. Now it is true that there are many different entropy expressions that go into substantially the same thing in this limit; several examples were given by Gibbs. However, the Boltzmann expression is not one of them; as we prove in Sec. Ill , the difference is a direct measure of the effect of interparticle forces on the potential energy and pressure, and increases proportionally to the size of the system. Failure to recognize the fundamental role of the Gibbs H function is closely related to a much deeper confusion about entropy, probability, and irreversibility in general.As to the connections between entropy and information, in particular, "subjective human ignorance," Jaynes says, The phase volume W0 therefore describes the full range of possible initial microstates; and not some arbitrary subset of them; this is the basic justification for using the canonical distribution to describe partial information. On the "subjective" side, we can therefore say that W0 measures our degree of ignorance as to the true unknown microstate, when the only information we have consists of the macroscopic thermodynamic parameters; a remark first made by Boltzmann.
Gibbs Paradox
In Jaynes' article on the famous paradox, he writes...
Some important facts about thermodynamics have not been understood by others to this day, nearly as well as Gibbs understood them over 100 years ago. Other aspects of this “new” development have been reported elsewhere (Jaynes 1986, 1988, 1989). In the present note we consider the “Gibbs Paradox” about entropy of mixing and the logically inseparable topics of reversibility and the extensive property of entropy. For 80 years it has seemed natural that, to find what Gibbs had to say about this, one should turn to his Statistical Mechanics. For 60 years, textbooks and teachers (including, regrettably, the present writer) have impressed upon students how remarkable it was that Gibbs, already in 1902, had been able to hit upon this paradox which foretold - and had its resolution only in - quantum theory with its lore about indistinguishable particles, Bose and Fermi statistics, etc.
References
Gibbs vs Boltzmann Entropies, American Journal of Physics 33, no. 5 (1965): 391-398.
The Gibbs Paradox, in Maximum Entropy and Bayesian Methods, pp. 1-21. Springer Netherlands, 1992.
|