Philosophers
Mortimer Adler Rogers Albritton Alexander of Aphrodisias Samuel Alexander William Alston Anaximander G.E.M.Anscombe Anselm Louise Antony Thomas Aquinas Aristotle David Armstrong Harald Atmanspacher Robert Audi Augustine J.L.Austin A.J.Ayer Alexander Bain Mark Balaguer Jeffrey Barrett William Barrett William Belsham Henri Bergson George Berkeley Isaiah Berlin Richard J. Bernstein Bernard Berofsky Robert Bishop Max Black Susanne Bobzien Emil du Bois-Reymond Hilary Bok Laurence BonJour George Boole Émile Boutroux Daniel Boyd F.H.Bradley C.D.Broad Michael Burke Jeremy Butterfield Lawrence Cahoone C.A.Campbell Joseph Keim Campbell Rudolf Carnap Carneades Nancy Cartwright Gregg Caruso Ernst Cassirer David Chalmers Roderick Chisholm Chrysippus Cicero Tom Clark Randolph Clarke Samuel Clarke Anthony Collins Antonella Corradini Diodorus Cronus Jonathan Dancy Donald Davidson Mario De Caro Democritus Daniel Dennett Jacques Derrida René Descartes Richard Double Fred Dretske John Dupré John Earman Laura Waddell Ekstrom Epictetus Epicurus Austin Farrer Herbert Feigl Arthur Fine John Martin Fischer Frederic Fitch Owen Flanagan Luciano Floridi Philippa Foot Alfred Fouilleé Harry Frankfurt Richard L. Franklin Bas van Fraassen Michael Frede Gottlob Frege Peter Geach Edmund Gettier Carl Ginet Alvin Goldman Gorgias Nicholas St. John Green H.Paul Grice Ian Hacking Ishtiyaque Haji Stuart Hampshire W.F.R.Hardie Sam Harris William Hasker R.M.Hare Georg W.F. Hegel Martin Heidegger Heraclitus R.E.Hobart Thomas Hobbes David Hodgson Shadsworth Hodgson Baron d'Holbach Ted Honderich Pamela Huby David Hume Ferenc Huoranszki Frank Jackson William James Lord Kames Robert Kane Immanuel Kant Tomis Kapitan Walter Kaufmann Jaegwon Kim William King Hilary Kornblith Christine Korsgaard Saul Kripke Thomas Kuhn Andrea Lavazza Christoph Lehner Keith Lehrer Gottfried Leibniz Jules Lequyer Leucippus Michael Levin Joseph Levine George Henry Lewes C.I.Lewis David Lewis Peter Lipton C. Lloyd Morgan John Locke Michael Lockwood Arthur O. Lovejoy E. Jonathan Lowe John R. Lucas Lucretius Alasdair MacIntyre Ruth Barcan Marcus Tim Maudlin James Martineau Nicholas Maxwell Storrs McCall Hugh McCann Colin McGinn Michael McKenna Brian McLaughlin John McTaggart Paul E. Meehl Uwe Meixner Alfred Mele Trenton Merricks John Stuart Mill Dickinson Miller G.E.Moore Thomas Nagel Otto Neurath Friedrich Nietzsche John Norton P.H.Nowell-Smith Robert Nozick William of Ockham Timothy O'Connor Parmenides David F. Pears Charles Sanders Peirce Derk Pereboom Steven Pinker U.T.Place Plato Karl Popper Porphyry Huw Price H.A.Prichard Protagoras Hilary Putnam Willard van Orman Quine Frank Ramsey Ayn Rand Michael Rea Thomas Reid Charles Renouvier Nicholas Rescher C.W.Rietdijk Richard Rorty Josiah Royce Bertrand Russell Paul Russell Gilbert Ryle Jean-Paul Sartre Kenneth Sayre T.M.Scanlon Moritz Schlick John Duns Scotus Arthur Schopenhauer John Searle Wilfrid Sellars David Shiang Alan Sidelle Ted Sider Henry Sidgwick Walter Sinnott-Armstrong Peter Slezak J.J.C.Smart Saul Smilansky Michael Smith Baruch Spinoza L. Susan Stebbing Isabelle Stengers George F. Stout Galen Strawson Peter Strawson Eleonore Stump Francisco Suárez Richard Taylor Kevin Timpe Mark Twain Peter Unger Peter van Inwagen Manuel Vargas John Venn Kadri Vihvelin Voltaire G.H. von Wright David Foster Wallace R. Jay Wallace W.G.Ward Ted Warfield Roy Weatherford C.F. von Weizsäcker William Whewell Alfred North Whitehead David Widerker David Wiggins Bernard Williams Timothy Williamson Ludwig Wittgenstein Susan Wolf Scientists David Albert Michael Arbib Walter Baade Bernard Baars Jeffrey Bada Leslie Ballentine Marcello Barbieri Gregory Bateson Horace Barlow John S. Bell Mara Beller Charles Bennett Ludwig von Bertalanffy Susan Blackmore Margaret Boden David Bohm Niels Bohr Ludwig Boltzmann Emile Borel Max Born Satyendra Nath Bose Walther Bothe Jean Bricmont Hans Briegel Leon Brillouin Stephen Brush Henry Thomas Buckle S. H. Burbury Melvin Calvin Donald Campbell Sadi Carnot Anthony Cashmore Eric Chaisson Gregory Chaitin Jean-Pierre Changeux Rudolf Clausius Arthur Holly Compton John Conway Jerry Coyne John Cramer Francis Crick E. P. Culverwell Antonio Damasio Olivier Darrigol Charles Darwin Richard Dawkins Terrence Deacon Lüder Deecke Richard Dedekind Louis de Broglie Stanislas Dehaene Max Delbrück Abraham de Moivre Bernard d'Espagnat Paul Dirac Hans Driesch John Eccles Arthur Stanley Eddington Gerald Edelman Paul Ehrenfest Manfred Eigen Albert Einstein George F. R. Ellis Hugh Everett, III Franz Exner Richard Feynman R. A. Fisher David Foster Joseph Fourier Philipp Frank Steven Frautschi Edward Fredkin Augustin-Jean Fresnel Benjamin Gal-Or Howard Gardner Lila Gatlin Michael Gazzaniga Nicholas Georgescu-Roegen GianCarlo Ghirardi J. Willard Gibbs James J. Gibson Nicolas Gisin Paul Glimcher Thomas Gold A. O. Gomes Brian Goodwin Joshua Greene Dirk ter Haar Jacques Hadamard Mark Hadley Patrick Haggard J. B. S. Haldane Stuart Hameroff Augustin Hamon Sam Harris Ralph Hartley Hyman Hartman Jeff Hawkins John-Dylan Haynes Donald Hebb Martin Heisenberg Werner Heisenberg John Herschel Basil Hiley Art Hobson Jesper Hoffmeyer Don Howard John H. Jackson William Stanley Jevons Roman Jakobson E. T. Jaynes Pascual Jordan Eric Kandel Ruth E. Kastner Stuart Kauffman Martin J. Klein William R. Klemm Christof Koch Simon Kochen Hans Kornhuber Stephen Kosslyn Daniel Koshland Ladislav Kovàč Leopold Kronecker Rolf Landauer Alfred Landé Pierre-Simon Laplace Karl Lashley David Layzer Joseph LeDoux Gerald Lettvin Gilbert Lewis Benjamin Libet David Lindley Seth Lloyd Werner Loewenstein Hendrik Lorentz Josef Loschmidt Alfred Lotka Ernst Mach Donald MacKay Henry Margenau Owen Maroney David Marr Humberto Maturana James Clerk Maxwell Ernst Mayr John McCarthy Warren McCulloch N. David Mermin George Miller Stanley Miller Ulrich Mohrhoff Jacques Monod Vernon Mountcastle Emmy Noether Donald Norman Travis Norsen Alexander Oparin Abraham Pais Howard Pattee Wolfgang Pauli Massimo Pauri Wilder Penfield Roger Penrose Steven Pinker Colin Pittendrigh Walter Pitts Max Planck Susan Pockett Henri Poincaré Daniel Pollen Ilya Prigogine Hans Primas Zenon Pylyshyn Henry Quastler Adolphe Quételet Pasco Rakic Nicolas Rashevsky Lord Rayleigh Frederick Reif Jürgen Renn Giacomo Rizzolati A.A. Roback Emil Roduner Juan Roederer Jerome Rothstein David Ruelle David Rumelhart Robert Sapolsky Tilman Sauer Ferdinand de Saussure Jürgen Schmidhuber Erwin Schrödinger Aaron Schurger Sebastian Seung Thomas Sebeok Franco Selleri Claude Shannon Charles Sherrington Abner Shimony Herbert Simon Dean Keith Simonton Edmund Sinnott B. F. Skinner Lee Smolin Ray Solomonoff Roger Sperry John Stachel Henry Stapp Tom Stonier Antoine Suarez Leo Szilard Max Tegmark Teilhard de Chardin Libb Thims William Thomson (Kelvin) Richard Tolman Giulio Tononi Peter Tse Alan Turing C. S. Unnikrishnan Francisco Varela Vlatko Vedral Vladimir Vernadsky Mikhail Volkenstein Heinz von Foerster Richard von Mises John von Neumann Jakob von Uexküll C. H. Waddington John B. Watson Daniel Wegner Steven Weinberg Paul A. Weiss Herman Weyl John Wheeler Jeffrey Wicken Wilhelm Wien Norbert Wiener Eugene Wigner E. O. Wilson Günther Witzany Stephen Wolfram H. Dieter Zeh Semir Zeki Ernst Zermelo Wojciech Zurek Konrad Zuse Fritz Zwicky Presentations Biosemiotics Free Will Mental Causation James Symposium |
Information
The simple definition of information is the act of informing - the communication of knowledge from a sender to a receiver that informs (literally shapes) the receiver.
By information we mean a quantity that can be understood mathematically and physically. It corresponds to the common-sense meaning of information, in the sense of communicating or informing. It is like the information stored in books and computers. But it also measures the information in any physical object, like a snow crystal or a star like our sun, as well as the information in biological systems, including the genetic code, the cell structure, the messaging inside and between the cells, and the developmental learning of the phenotype.
Although some commentators would like to limit the term "information" to messages sent with an intended purpose, physical scientists have long considered the structure in physical objects as something that can be quantitatively measured by an observer. In our digital "information age," those measurements are reported in digital "bits".
Now information is neither matter nor energy, though it needs matter to be embodied, and energy to be communicated.
Information philosophy considers a material object as an "information structure," from which the immaterial information can be abstracted as meaningful knowledge. In addition to structure, much of the information in living things consists of messages that are sent to invoke processes running in biological machines. Biological structures are often digital (DNA, RNA, proteins) and biological messaging greatly resembles a language, with arbitrary symbols, much like human language.
It was the dream of great logicians, from Gottfried Leibniz and Gottlob Frege to Bertrand Russell and Ludwig Wittgenstein, to represent the physical world by "logical atoms." The later Wittgenstein and twentieth-century language philosophers thought that "what there is" could be described with analytically true statements or "propositions." For Wittgenstein, every true proposition corresponds to a real fact in the world. They were failures, but information philosophy builds on their dreams.
Information philosophy identifies the total information in a material object with the yes/no answers to all the questions that can be asked or with the true/false statements that can be said about the object. In modern information theory terms, information philosophy "digitizes" the object. From each answer or truth value we can, in principle, derive a "bit" of information.
While "total" information is hopelessly impractical to measure precisely, whatever information we can "abstract" from a "concrete" object gives us a remarkably simple answer to one of the deepest problems in metaphysics, the existential status of ideas, of Platonic "Forms," including the entities of logic and mathematics.
Rather than simply ask "Do abstract entities like numbers and properties exist," a metaphysicist prefers to ask in what way they might exist that is different from the way in which "concrete" objects exist.
Concrete objects can be seen and touched by our senses. They are purely material, with causal relations that obey the physical, though statistical, laws of nature.
Abstract entities are immaterial, but some of them can still play a causal role, for example when agents use them to decide on their actions, or when chance events (particularly at the quantum level) go this way instead of that.
Information philosophy restores so-called "non-existent objects" to our ontology. They consist of the same kind of abstract information that provides the structure and process information of a concrete object. What we call a "concept" about an object is some subset of the information in the object, accurate to the extent that the concept is isomorphic to that subset. By "picking out" different subsets, we can categorize and sort objects into classes or sets according to different concepts.
Information philosophy hope to settle somewhere deep philosophical issues about absolute and relative identity, first posed by Leibniz. All material objects are self-identical, despite concerns about vague boundaries. All objects have relations with other objects that can be interpreted as relative identities. All objects are relatively identical to other objects in some respects and different qua other respects.
Two numerically distinct objects can be perfectly identical (x = x) internally, if their intrinsic information content is identical. Relational (extrinsic) information with other objects and positions in space and time is ignored. The Greeks called intrinsic information pros heauto or idios poion. Aristotle and the Stoics called this the peculiar qualities of an individual.
They distinguished peculiar properties from the material substrate, which they called hupokeimenon, the "underlying. Extrinsic information is found in an object's relations with other objects and space and time. The Greek terms were pros ta alla, toward others, and
pros ti pos echon, relatively disposed. Just as the mind is like software in the brain hardware, the abstract information in a material object is the same kind of immaterial stuff as the information in an abstract entity, a concept or a "non-existent object." Some philosophers say that such immaterial things "subsist," rather than exist. Broadly speaking, the distinction between concrete and abstract objects corresponds to the distinction between the material and the ideal. Ideas in minds are immaterial. They need the matter of the brain to be embodied and some kind of energy to be communicated to other minds. But they are not themselves matter or energy. Those "eliminativists" who believe the natural world contains only material things deny the existence of ideas and immaterial information. Bits of information are close to the logical atoms of Russell and Wittgenstein. And information philosophy is a "correspondence theory." The information we can actually measure in an information structure is a subset, a partial isomorphism, of the total information in the structure. In 1929, Leo Szilard calculated the mean value of the quantity of entropy produced by a 1-bit ("yes/no") measurement as
S = k log 2,
where k is Boltzmann's constant.
Following Szilard, Ludwig von Bertalanffy, Erwin Schrödinger, Norbert Wiener, Claude Shannon, Warren Weaver, John von Neumann, Leon Brillouin, C.F. von Weizsäcker, and of course John Wheeler, with his "It from Bit." They all had similar views of the connection between the physical entropy of matter and the abstract "bits" of information that can be used to describe the physical arrangement of discrete elementary particles.
For Schrödinger, a living organism is "feeding on negative entropy" from the sun. Wiener said "The quantity we define as amount of information is the negative of the quantity usually defined as entropy in similar situations." Brillouin created the term "negentropy" because he said, "One of the most interesting parts in Wiener's Cybernetics is the discussion on "Time series, information, and communication," in which he specifies that a certain "amount of information is the negative of the quantity usually defined as entropy in similar situations."
Shannon, with a nudge from von Neumann, used the term entropy to describe his estimate of the amount of information that can be communicated over a channel, because his mathematical theory of the communication of information produced a mathematical formula identical to Boltzmann's equation for entropy, except for a minus sign (the negative in negative entropy).
Boltzmann entropy: S = k ∑ pi ln pi. Shannon information: I = - ∑ pi ln pi.
Entropy is energy divided by temperature (joules/°K) and information is measured in dimensionless bits. Entropy is a physical property of a material object. Information is an immaterial property of many things, material and ideal.
Shannon's communications theory brings us back to information as that found in a message between a sender and a receiver.
He showed that a message that is certain to tell you something you already know contains no new information.
If everything that happens was certain to happen, as determinist philosophers claim, no new information would ever enter the universe. Information would be a universal constant. There would be "nothing new under the sun." Every past and future event can in principle be known (as Pierre-Simon Laplace suggested) by a super-intelligence with access to such a fixed totality of information.
It is of the deepest philosophical significance that information is based on the mathematics of probability. If all outcomes were certain, there would be no “surprises” in the universe. Information would be conserved and a universal constant, as some mathematicians mistakenly believe. Information philosophy requires the ontological chance and probabilistic outcomes of modern quantum physics to produce new information.
But at the same time, without the extraordinary stability of quantized information structures over cosmological time scales, life and the universe we know would not be possible. Quantum mechanics reveals the architecture of the universe to be discrete rather than continuous, to be digital rather than analog.
Creation of information structures means that in parts of the universe the local entropy is actually going down. Creation of a low-entropy system is always accompanied by radiation of energy and entropy away from the local structure to distant parts of the universe, to the night sky and the cosmic background.
From Newton’s time to the start of the 19th century, the Laplacian view coincided with the notion of the divine foreknowledge of an omniscient God. On this view, complete, perfect and constant information exists at all times that describes the designed evolution of the universe and of the creatures inhabiting the world.
From Newton’s time to the start of the 19th century, the Laplacian view coincided with the notion of the divine foreknowledge of an omniscient God. On this view, complete, perfect and constant information exists at all times that describes the designed evolution of the universe and of the creatures inhabiting the world.
In this God’s-eye view, information is a constant of nature. Some mathematicians argue that information must be a conserved quantity, like matter and energy. They are wrong. In Laplace's view, information would be a constant straight line over all time, as shown in the figure.
If information were a universal constant, there would be “nothing new under the sun.” Every past and future event can in principle be known by Laplace's super-intelligent demon , with its access to such a fixed totality of information.
Midway through the 19th century, Lord Kelvin (William Thomson) realized that the newly discovered second law of thermodynamics required that information could not be constant, but would be destroyed as the entropy (disorder) increased. Hermann Helmholtz described this as the “heat death” of the universe.
Mathematicians who are convinced that information is always conserved argue that macroscopic order is disappearing into microscopic order, but the information could in principle be recovered, if time could only be reversed.
This raises the possibility of some connection between the increasing entropy and what Arthur Stanley Eddington called “Time’s Arrow.”
Kelvin’s claim that information must be destroyed when entropy increases would be correct if the universe were a closed system. But in our open and expanding universe, my Harvard colleague David Layzer showed that the maximum possible entropy is increasing faster than the actual entropy. The difference between maximum possible entropy and the current entropy is called negative entropy, opening the possibility for complex and stable information structures to develop.
We can see from the figure that it is not only entropy that increases in the direction of the arrow of time, but also the information content of the universe. We can describe the new information as "emerging."
Despite the second law of thermodynamics, stable and lawlike information structures evolved out of the initial chaos. First, quantum processes formed microscopic particulate matter – quarks, baryons, nuclei, and electrons. Eventually these became atoms,. Later, under the influence of gravitation – macroscopic galaxies, stars, and planets form.
What is information that merits its use as the foundation of a new philosophical method of inquiry?
Abstract information is neither matter nor energy, yet it needs matter for its concrete embodiment and energy for its communication. Information is immaterial.
It is the modern spirit, the ghost in the machine. Immaterial information is perhaps as close as a physical or biological scientist can get to the idea of a soul or spirit that departs the body at death. When a living being dies, it is the maintenance of biological information that ceases. The matter remains. Biological systems are different from purely physical systems primarily because they create, store, and communicate information. Living things store information in a memory of the past that they use to shape their future. Fundamental physical objects like atoms have no history. And when human beings export some of their personal information to make it a part of human culture, that information moves closer to becoming immortal. Human beings differ from other animals in their extraordinary ability to communicate information and store it in external artifacts. In the last decade the amount of external information per person may have grown to exceed an individual's purely biological information. Information is an excellent basis for philosophy, and for science as well, capable of answering questions about metaphysics (the ontology of things themselves), epistemology (the existential status of ideas and how we know them), idealism (pure information), the mind-body problem, the problem of free will, and the "hard" problem of consciousness.
Actionable information has pragmatic value.
In our information philosophy, knowledge is the sum of all the information created and preserved by humanity. It is all the information in human minds and in artifacts of every kind - from books and internetworked computers to our dwellings and managed environment.
We shall see that all information in the universe is created by a single two-part process, the only one capable of generating and maintaining information in spite of the dread second law of thermodynamics, which describes the irresistible increase in disorder or entropy. We call this anti-entropic process ergodic. It should be appreciated as the creative source of everything we can possibly value, and of everything distinguishable from chaos and therefore interesting.
Enabled by the general relativistic expansion of the universe, the cosmic creative process has formed the macrocosmos of galaxies, stars, and planets. It has also generated the particular forms of microscopic matter - atoms, molecules, and the complex macromolecules that support biological organisms. It includes all quantum cooperative phenomena.
Quantum phenomena control the evolution of life and human knowledge. They help bring new information into the universe in a fundamentally unpredictable way. They drive biological speciation. They facilitate human creativity and free will.
Although information philosophy looks at the universe, life, and intelligence through the single lens of information, it is far from mechanical and reducible to a deterministic physics. The growth of information over time - our principle of increasing information - is the essential reason why time matters and individuals are distinguishable.
Information is the principal reason that biology is not reducible to chemistry and physics. Increasing information (a combination of perfect replication with occasional copying errors) explains all emergent phenomena, including many "laws of nature."
In information philosophy, the future is unpredictable for two basic reasons. First, quantum mechanics shows that some events are not predictable. The world is causal, but not pre-determined. Second, the early universe does not contain the information of later times, just as early primates do not contain the information structures for intelligence and verbal communication, and infants do not contain the knowledge and remembered experience they will have as adults.
In the naive world of Laplace's demon and strict determinism, all the information in the universe is constant at all times. But "determinism" itself is an emergent idea, realized only when large numbers of particles assemble into bodies that can average over the irreducible microscopic indeterminacy of their component atoms.
Information and Entropy
In our open and expanding universe, the maximum possible entropy is increasing faster than the actual entropy. The difference between maximum possible entropy and the current entropy is called negative entropy. There is an intimate connection between the physical quantity negative entropy and information.
To give this very positive quantity of "negative" entropy a positive name, we call it "Ergo" and describe processes capable of generating negative entropy "ergodic."
Ergodic processes provide room to increase the information structures in the universe. As pointed out by David Layzer, the Arrow of Time points not only to increasing disorder but also to increasing information.
The increase of biological information is primarily by perfect replication of prior existing information, but it is critically important that replication errors occur from time to time. They are the source of new species and creative new ideas.
The universe is creative. Information structures and processes are emergent. Some laws of nature are emergent. Adequately deterministic phenomena are emergent. The very idea of determinism is emergent. Knowledge of the present did not all exist in the past. We have only a rough idea of the exact future.
The creative process continues. Life and humanity are a part of the process. What gets created is in part our responsibility. We can choose to help create and preserve information. Or we can choose to destroy it. We are free to create our own future.
Is Everything Information?
Some recent scientists, especially mathematical physicists, think that the fundamental essence of the universe is information. Like the earliest monists who say All is One, theists who say everything is simply thoughts in the mind of God, or panpsychists for whom our minds are part of a single cosmic consciousness, these arguments that explain everything as one thing, really explain nothing.
Explanations need details about a large number of particular things for us to generalize and think we know something about all things.
Some specific physicists who have looked to information as the basis for physics include John Wheeler ("it from bit"), Seth Lloyd ("the universe is a computer"), Vlatko Vedral ("the universe is quantum information"), and Erik Verlinde ("matter is made of bits of information").
References
Is Information Fundamental?
For Teachers
For Scholars
|