Citation for this page in APA citation style.           Close


Philosophers

Mortimer Adler
Rogers Albritton
Alexander of Aphrodisias
Samuel Alexander
William Alston
Anaximander
G.E.M.Anscombe
Anselm
Louise Antony
Thomas Aquinas
Aristotle
David Armstrong
Harald Atmanspacher
Robert Audi
Augustine
J.L.Austin
A.J.Ayer
Alexander Bain
Mark Balaguer
Jeffrey Barrett
William Barrett
William Belsham
Henri Bergson
George Berkeley
Isaiah Berlin
Richard J. Bernstein
Bernard Berofsky
Robert Bishop
Max Black
Susanne Bobzien
Emil du Bois-Reymond
Hilary Bok
Laurence BonJour
George Boole
Émile Boutroux
Daniel Boyd
F.H.Bradley
C.D.Broad
Michael Burke
Lawrence Cahoone
C.A.Campbell
Joseph Keim Campbell
Rudolf Carnap
Carneades
Nancy Cartwright
Gregg Caruso
Ernst Cassirer
David Chalmers
Roderick Chisholm
Chrysippus
Cicero
Tom Clark
Randolph Clarke
Samuel Clarke
Anthony Collins
Antonella Corradini
Diodorus Cronus
Jonathan Dancy
Donald Davidson
Mario De Caro
Democritus
Daniel Dennett
Jacques Derrida
René Descartes
Richard Double
Fred Dretske
John Dupré
John Earman
Laura Waddell Ekstrom
Epictetus
Epicurus
Austin Farrer
Herbert Feigl
Arthur Fine
John Martin Fischer
Frederic Fitch
Owen Flanagan
Luciano Floridi
Philippa Foot
Alfred Fouilleé
Harry Frankfurt
Richard L. Franklin
Bas van Fraassen
Michael Frede
Gottlob Frege
Peter Geach
Edmund Gettier
Carl Ginet
Alvin Goldman
Gorgias
Nicholas St. John Green
H.Paul Grice
Ian Hacking
Ishtiyaque Haji
Stuart Hampshire
W.F.R.Hardie
Sam Harris
William Hasker
R.M.Hare
Georg W.F. Hegel
Martin Heidegger
Heraclitus
R.E.Hobart
Thomas Hobbes
David Hodgson
Shadsworth Hodgson
Baron d'Holbach
Ted Honderich
Pamela Huby
David Hume
Ferenc Huoranszki
Frank Jackson
William James
Lord Kames
Robert Kane
Immanuel Kant
Tomis Kapitan
Walter Kaufmann
Jaegwon Kim
William King
Hilary Kornblith
Christine Korsgaard
Saul Kripke
Thomas Kuhn
Andrea Lavazza
Christoph Lehner
Keith Lehrer
Gottfried Leibniz
Jules Lequyer
Leucippus
Michael Levin
Joseph Levine
George Henry Lewes
C.I.Lewis
David Lewis
Peter Lipton
C. Lloyd Morgan
John Locke
Michael Lockwood
Arthur O. Lovejoy
E. Jonathan Lowe
John R. Lucas
Lucretius
Alasdair MacIntyre
Ruth Barcan Marcus
Tim Maudlin
James Martineau
Nicholas Maxwell
Storrs McCall
Hugh McCann
Colin McGinn
Michael McKenna
Brian McLaughlin
John McTaggart
Paul E. Meehl
Uwe Meixner
Alfred Mele
Trenton Merricks
John Stuart Mill
Dickinson Miller
G.E.Moore
Thomas Nagel
Otto Neurath
Friedrich Nietzsche
John Norton
P.H.Nowell-Smith
Robert Nozick
William of Ockham
Timothy O'Connor
Parmenides
David F. Pears
Charles Sanders Peirce
Derk Pereboom
Steven Pinker
U.T.Place
Plato
Karl Popper
Porphyry
Huw Price
H.A.Prichard
Protagoras
Hilary Putnam
Willard van Orman Quine
Frank Ramsey
Ayn Rand
Michael Rea
Thomas Reid
Charles Renouvier
Nicholas Rescher
C.W.Rietdijk
Richard Rorty
Josiah Royce
Bertrand Russell
Paul Russell
Gilbert Ryle
Jean-Paul Sartre
Kenneth Sayre
T.M.Scanlon
Moritz Schlick
John Duns Scotus
Arthur Schopenhauer
John Searle
Wilfrid Sellars
David Shiang
Alan Sidelle
Ted Sider
Henry Sidgwick
Walter Sinnott-Armstrong
Peter Slezak
J.J.C.Smart
Saul Smilansky
Michael Smith
Baruch Spinoza
L. Susan Stebbing
Isabelle Stengers
George F. Stout
Galen Strawson
Peter Strawson
Eleonore Stump
Francisco Suárez
Richard Taylor
Kevin Timpe
Mark Twain
Peter Unger
Peter van Inwagen
Manuel Vargas
John Venn
Kadri Vihvelin
Voltaire
G.H. von Wright
David Foster Wallace
R. Jay Wallace
W.G.Ward
Ted Warfield
Roy Weatherford
C.F. von Weizsäcker
William Whewell
Alfred North Whitehead
David Widerker
David Wiggins
Bernard Williams
Timothy Williamson
Ludwig Wittgenstein
Susan Wolf

Scientists

David Albert
Michael Arbib
Walter Baade
Bernard Baars
Jeffrey Bada
Leslie Ballentine
Marcello Barbieri
Gregory Bateson
Horace Barlow
John S. Bell
Mara Beller
Charles Bennett
Ludwig von Bertalanffy
Susan Blackmore
Margaret Boden
David Bohm
Niels Bohr
Ludwig Boltzmann
Emile Borel
Max Born
Satyendra Nath Bose
Walther Bothe
Jean Bricmont
Hans Briegel
Leon Brillouin
Stephen Brush
Henry Thomas Buckle
S. H. Burbury
Melvin Calvin
Donald Campbell
Sadi Carnot
Anthony Cashmore
Eric Chaisson
Gregory Chaitin
Jean-Pierre Changeux
Rudolf Clausius
Arthur Holly Compton
John Conway
Jerry Coyne
John Cramer
Francis Crick
E. P. Culverwell
Antonio Damasio
Olivier Darrigol
Charles Darwin
Richard Dawkins
Terrence Deacon
Lüder Deecke
Richard Dedekind
Louis de Broglie
Stanislas Dehaene
Max Delbrück
Abraham de Moivre
Bernard d'Espagnat
Paul Dirac
Hans Driesch
John Eccles
Arthur Stanley Eddington
Gerald Edelman
Paul Ehrenfest
Manfred Eigen
Albert Einstein
George F. R. Ellis
Hugh Everett, III
Franz Exner
Richard Feynman
R. A. Fisher
David Foster
Joseph Fourier
Philipp Frank
Steven Frautschi
Edward Fredkin
Benjamin Gal-Or
Howard Gardner
Lila Gatlin
Michael Gazzaniga
Nicholas Georgescu-Roegen
GianCarlo Ghirardi
J. Willard Gibbs
James J. Gibson
Nicolas Gisin
Paul Glimcher
Thomas Gold
A. O. Gomes
Brian Goodwin
Joshua Greene
Dirk ter Haar
Jacques Hadamard
Mark Hadley
Patrick Haggard
J. B. S. Haldane
Stuart Hameroff
Augustin Hamon
Sam Harris
Ralph Hartley
Hyman Hartman
Jeff Hawkins
John-Dylan Haynes
Donald Hebb
Martin Heisenberg
Werner Heisenberg
John Herschel
Basil Hiley
Art Hobson
Jesper Hoffmeyer
Don Howard
John H. Jackson
William Stanley Jevons
Roman Jakobson
E. T. Jaynes
Pascual Jordan
Eric Kandel
Ruth E. Kastner
Stuart Kauffman
Martin J. Klein
William R. Klemm
Christof Koch
Simon Kochen
Hans Kornhuber
Stephen Kosslyn
Daniel Koshland
Ladislav Kovàč
Leopold Kronecker
Rolf Landauer
Alfred Landé
Pierre-Simon Laplace
Karl Lashley
David Layzer
Joseph LeDoux
Gerald Lettvin
Gilbert Lewis
Benjamin Libet
David Lindley
Seth Lloyd
Werner Loewenstein
Hendrik Lorentz
Josef Loschmidt
Alfred Lotka
Ernst Mach
Donald MacKay
Henry Margenau
Owen Maroney
David Marr
Humberto Maturana
James Clerk Maxwell
Ernst Mayr
John McCarthy
Warren McCulloch
N. David Mermin
George Miller
Stanley Miller
Ulrich Mohrhoff
Jacques Monod
Vernon Mountcastle
Emmy Noether
Donald Norman
Alexander Oparin
Abraham Pais
Howard Pattee
Wolfgang Pauli
Massimo Pauri
Wilder Penfield
Roger Penrose
Steven Pinker
Colin Pittendrigh
Walter Pitts
Max Planck
Susan Pockett
Henri Poincaré
Daniel Pollen
Ilya Prigogine
Hans Primas
Zenon Pylyshyn
Henry Quastler
Adolphe Quételet
Pasco Rakic
Nicolas Rashevsky
Lord Rayleigh
Frederick Reif
Jürgen Renn
Giacomo Rizzolati
A.A. Roback
Emil Roduner
Juan Roederer
Jerome Rothstein
David Ruelle
David Rumelhart
Robert Sapolsky
Tilman Sauer
Ferdinand de Saussure
Jürgen Schmidhuber
Erwin Schrödinger
Aaron Schurger
Sebastian Seung
Thomas Sebeok
Franco Selleri
Claude Shannon
Charles Sherrington
Abner Shimony
Herbert Simon
Dean Keith Simonton
Edmund Sinnott
B. F. Skinner
Lee Smolin
Ray Solomonoff
Roger Sperry
John Stachel
Henry Stapp
Tom Stonier
Antoine Suarez
Leo Szilard
Max Tegmark
Teilhard de Chardin
Libb Thims
William Thomson (Kelvin)
Richard Tolman
Giulio Tononi
Peter Tse
Alan Turing
C. S. Unnikrishnan
Francisco Varela
Vlatko Vedral
Vladimir Vernadsky
Mikhail Volkenstein
Heinz von Foerster
Richard von Mises
John von Neumann
Jakob von Uexküll
C. H. Waddington
John B. Watson
Daniel Wegner
Steven Weinberg
Paul A. Weiss
Herman Weyl
John Wheeler
Jeffrey Wicken
Wilhelm Wien
Norbert Wiener
Eugene Wigner
E. O. Wilson
Günther Witzany
Stephen Wolfram
H. Dieter Zeh
Semir Zeki
Ernst Zermelo
Wojciech Zurek
Konrad Zuse
Fritz Zwicky

Presentations

Biosemiotics
Free Will
Mental Causation
James Symposium
 
Bell's "Kinky" Square Polytope

Recall Bell's description of the entanglement process, with its assumption that first one measurement is made, and the other measurement is made later.

If measurement of the component σ1 • a, where a is some unit vector, yields the value + 1 then, according to quantum mechanics, measurement of σ2 • a must yield the value — 1 and vice versa... Since we can predict in advance the result of measuring any chosen component of σ2, by previously measuring the same component of σ1, it follows that the result of any such measurement must actually be predetermined.
Since the collapse of the two-particle wave function is indeterminate, nothing is pre-determined, although σ2 is indeed determined to have opposite sign (to conserve spin momentum) once σ1 is measured. Here Bell is describing the "following" measurement to be in the same direction as the "previous" measurement. In Bell's description, Bob is measuring "the same component" as Alice, meaning that he measures at the same angle as Alice.

If Bob should measure in a different spin direction from Alice (a different spin component), his measurements will lose their perfect correlation, slowly at first for a small angle. As the angle between their measurements increases, the correlation falls off as the squared cosine of the angle. Oddly, Bell's inequality for local hidden variables predicts a linear falloff with angle. We shall try to understand how Bell came up with a linear angle dependence for what he called his ad hoc model and later his "inequality." It is this linear dependence that leads to Bell's polytope being a square.

Supporters of the Copenhagen Interpretation claim that the properties of particles (like angular or linear momentum) do not exist until they are measured. It was Pascual Jordan who claimed the measurement creates the value of a property. This is true when the preparation of the state is in an unknown linear combination (superposition) of quantum states.

In our case, the entangled particles have been prepared in a superposition of states, but both of them have total spin zero.

ψ12 = (1/√2) [ ψ+ (1) ψ- (2) - ψ- (1) ψ+ (2) ]

So whichever of these two states is created by the preparation, it will put the two particles in opposite spin states, randomly + - or - + , but still supporting Bell's view, that they will be perfectly (anti-)correlated when measured at exactly the same angle (measuring the same spin component).

Wolfgang Pauli called it a "measurement of the first kind" when a system is prepared in a state and if measured again, will be certainly found in the same state. (This is the basis for the quantum zeno effect.)

Since our two electrons have been prepared with one spin up and the other down, what could possibly cause them to change, for example, to both spins in the same direction, or as Copenhagen claims, simply to have both spins no longer definite until the next measurement?

As long as nothing interferes with either entangled particle as they travel to the distant detectors, they will be found to be still perfectly correlated, if (and only if) they are measured at the same angle. Otherwise, the correlations should fall off as the cosine (or perhaps the square of the cosine?) of the angle difference.

We can illustrate the straight-line predictions of Bell's inequalities for local hidden variables, the cosine curves predicted by quantum mechanics and conservation of angular momentum, and the odd "kinks" at angles 0°, 90°, 180°, and 270°, with what is called a "Popescu-Rorhlich box."
This square box is also called the Bell polytope.

It shows Bell’s local hidden variables prediction as four straight lines of the inner square. The circular region of quantum mechanics correlations are found outside Bell's straight lines, "violating" his inequalities. Quantum mechanics and Bell's inequalities meet at the corners, where Bell's predictions show a distinctly non-physical right-angle that Bell called a "kink."

All experimental results have been found to lie along the curved quantum predictions called the "Tsirelson bound."

In 1976, Bell gave us this diagram of the "kinks" in his local hidden variables inequality. He says,

Unlike the quantum correlation, which is stationary in θ at θ = 0, at the hidden variable correlation must have a kink there
Bell provides us no physical insight into the "kinky" square shape of his "local hidden variables" inequality.

In his famous 1981 article on "Bertlmann's Socks," Bell explains that the predictions for his "ad hoc" model are linear in the angle difference |a - b|, and he notes the fact that his inequality only agrees with the quantum predictions at the corners of the square of linear predictions above, and not at intermediate angles.
To account then for the Einstein-Podolsky-Rosen-Bohm correlations we have only to assume that the two particles emitted by the source have oppositely directed magnetic axes. Then if the magnetic axis of one particle is more nearly along (than against) one Stern-Gerlach field, the magnetic axes of the other particle will be more nearly against (than along) a parallel Stern- Gerlach field. So when one particle is deflected up, the other is deflected down, and vice versa. There is nothing whatever problematic or mind-boggling about these correlations, with parallel Stern-Gerlach analyzers, from the Einsteinian point of view.

So far so good. But now go a little further than before, and consider non-parallel Stern-Gerlach magnets. Let the first be rotated away from some standard position, about the particle line of flight, by an angle a. Let the second be rotated likewise by an angle b. Then if the magnetic axis of either particle separately is randomly oriented, but if the axes of the particles of a given pair are always oppositely oriented, a short calculation gives for the probabilities of the various possible results, in the ad hoc model,...

P(up, down) = P(down, up) = 1/2 - |a-b|/2π

where ‘up’ and ‘down’ are defined with respect to the magnetic fields of the two magnets. However, a quantum mechanical calculation gives

P(up, down) = P(down, up) = 1/2 - 1/2(sin(a - b)/2)2 [= 1/2(cos(a - b)/2)2]

Thus the ad hoc model does what is required of it (i.e., reproduces quantum mechanical results) only at (a — b) = 0, (a - b) = π/2 and (a — b) = π, but not at intermediate angles.

What was Bell's "short calculation" that gives "the probabilities of possible results" in his ad hoc model as linearly proportional to the angle |a-b|??

And what exactly was Bell's "quantum mechanical calculation" that gives us probabilities proportional to the cosine of the angle |a-b| squared?

Bell does not give us any underlying physical reasons for the linear dependence on angle. He clearly knows that his linear "inequality" is a strong challenge to the curved cosine prediction of quantum mechanics.

And Bell's odd prediction of sharp corners or "kinks" where his straight lines turn ninety degrees (it is only at these corners where his linear inequality agrees with the curving quantum mechanics), surely should have prompted Bell to give us a deeper explanation of his theorem?

When John Clauser wrote to Bell suggesting an experimental test of his inequality, Bell replied

"In view of the general success of quantum mechanics, it is very hard for me to doubt the outcome of such experiments. However, I would prefer these experiments, in which the crucial concepts are very directly tested, to have been done and the results on record."
And he added
"Moreover, there is always the chance of an unexpected result, which would shake the world."
Clauser later recalled to Gilder
"Being a young student in this age of revolutionary thinking, I naturally wanted to 'shake the world' ."

The dependence on the square of the cosine is the so-called "law of Malus" for crossed polarizers as pointed out by Abner Shimony in his Stanford Encyclopedia article on Bell's Theorem.

Paul Dirac taught his "principle of superposition" with crossed polarizers in his 1930 textbook The Principles of Quantum Mechanics.

Can Perfect Correlations Be Explained by Conservation Laws?
We find that David Bohm and John Bell implicitly and Eugene Wigner explicitly, used conservation of angular momentum (or particle spin) to tell us that if one spin-1/2 electron is measured up, the other must be down. Just as Albert Einstein implicitly used conservation of linear momentum in his development of the EPR Paradox.

David Bohm and Yakir Aharonov wrote in 1957,

We consider a molecule of total spin zero consisting of two atoms, each of spin one-half. The wave function of the system is therefore

ψ = (1/√2) [ ψ+ (1) ψ- (2) - ψ- (1) ψ+ (2) ]

where ψ+ (1) refers to the wave function of the atomic state in which one particle (A) has spin +ℏ/2, etc. The two atoms are then separated by a method that does not influence the total spin. After they have separated enough so that they cease to interact, any desired component of the spin of the first particle (A) is measured. Then, because the total spin is still zero, it can immediately be concluded that the same component of the spin of the other particle (B) is opposite to that of A.

Eugene Wigner wrote in 1963

If a measurement of the momentum of one of the particles is carried out — the possibility of this is never questioned — and gives the result p, the state vector of the other particle suddenly becomes a (slightly damped) plane wave with the momentum -p. This statement is synonymous with the statement that a measurement of the momentum of the second particle would give the result -p, as follows from the conservation law for linear momentum. The same conclusion can be arrived at also by a formal calculation of the possible results of a joint measurement of the momenta of the two particles.

Writing a few years after Bohm, and one year before Bell, Wigner explicitly describes Einstein's conservation of momentum example as well as the conservation of angular momentum (spin) that explains perfect correlations between angular momentum (spin) components measured in the same direction
One can go even further: instead of measuring the linear momentum of one particle, one can measure its angular momentum about a fixed axis. If this measurement yields the value mℏ, the state vector of the other particle suddenly becomes a cylindrical wave for which the same component of the angular momentum is -mℏ. This statement is again synonymous with the statement that a measurement of the said component of the angular momentum of the second particle certainly would give the value -mℏ. This can be inferred again from the conservation law of the angular momentum (which is zero for the two particles together) or by means of a formal analysis.

John Bell wrote in 1964,

With the example advocated by Bohm and Aharonov, the EPR argument is the following. Consider a pair of spin one-half particles formed somehow in the singlet spin state and moving freely in opposite directions. Measurements can be made, say by Stern-Gerlach magnets, on selected components of the spins σ1 and σ2. If measurement of the component σ1a, where a is some unit vector, yields the value + 1 then, according to quantum mechanics, measurement of σ2a must yield the value — 1 and vice versa. Now we make the hypothesis, and it seems one at least worth considering, that if the two measurements are made at places remote from one another the orientation of one magnet does not influence the result obtained with the other.
"pre-determination" is too strong a term. The first measurement just "determines" the later measurement. We shall see that the second measurement is synchronous with the "first" in a "special" frame
Since we can predict in advance the result of measuring any chosen component of σ2, by previously measuring the same component of σ1, it follows that the result of any such measurement must actually be predetermined.

Since the initial quantum mechanical wave function does not determine the result of an individual measurement, this predetermination implies the possibility of a more complete specification of the state.

Just like Bohm and Wigner, Bell is implicitly using the conservation of total spin.

Albert Einstein made the same argument in 1933, shortly before EPR, though with conservation of linear momentum, asking Leon Rosenfeld,

Suppose two particles are set in motion towards each other with the same, very large, momentum, and they interact with each other for a very short time when they pass at known positions. Consider now an observer who gets hold of one of the particles, far away from the region of interaction, and measures its momentum: then, from the conditions of the experiment, he will obviously be able to deduce the momentum of the other particle. If, however, he chooses to measure the position of the first particle, he will be able tell where the other particle is.

Supporters of the Copenhagen Interpretation claim that the properties of the particles (like angular or linear momentum) do not exist until they are measured. It was Pascual Jordan who claimed the measurement creates the value of a property. This is true when the preparation of the state is in an unknown linear combination (superposition) of quantum states.

And in our case, quantum mechanics describes the entangled particles as prepared in a superposition of two-particle states, but note that both of the states have total spin zero.

ψ12 = (1/√2) [ ψ+(1) ψ-(2) - ψ-(1) ψ+(2)]      (1)

Now this initial entangled state is spherically symmetric and rotationally invariant. It has no preferred spin direction that could "pre-determine" the directions that will be found by Alice and Bob, as Bell described.

The preferred direction is created by Alice's measurement, or by Bob's should he measure first in the "special frame" in which Alice and Bob are "at rest" and equidistant from the location of the initial entanglement.

Let's assume that Alice measures first and gets spin +1/2. The prepared state has been projected (randomly) into ψ+(1) ψ-(2).

But most important, Alice's measurement establishes the angle of her spin measurement - the angle of her Stern-Gerlach magnet in the x,y plane. Werner Heisenberg says it is her free choice to measure the x-component. As the Copenhagen Interpretation describes this , Alice brings this x-component property into existence. (This was Pascual Jordan's contribution to the interpretation.)

There was no x- or y-component in the rotationally invariant prepared entanglement.

Paul Dirac pointed out that the actual value for the property depend's on what he calls "Nature's choice." The initial prepared state (1) might equally have collapsed into ψ-(2). This is the source of the quantum randomness which is critically important for quantum encryption.

Whichever of the two states is projected by Alice's measurement, it breaks the original symmetry, and puts the two particles in opposite spin states, randomly + - or - +, supporting the views of Bohm, Wigner, and Bell, that particles will be perfectly (anti-)correlated when measured.

In our example, since Alice measured the x-component of spin as +1/2, Bob will necessarily (and because of conservation of angular momentum) measure the x-component as -1/2.

As we saw above, Wolfgang Pauli called it a "measurement of the first kind" when a system is prepared in a state, so that when measured, it will certainly be found in the same state.

As long as nothing interferes with either entangled particle as they travel to the distant detectors (though perhaps decoherence?), they will be found to be perfectly correlated if (and only if) they are measured at the same angle (in our case, the x-component). Otherwise. the correlations should fall off as the square of the cosine of the angle difference. It is strange that Bell accepted an inequality that predicts correlations fall off with angle as a non-physical straight-line function with "kinks."

In any case, conservation laws tell us that when either particle is measured, we know instantly those properties of the other particle, including its location equidistant from, but on the opposite side of, the entangling interaction, and all other conserved properties such as spin.

But this is not "action-at-a-distance." It's just "knowledge-at-a-distance."

A more recent (2005) study showing that correlations in Bell tests is the result of conservation of angular momentum is "Correlation functions, Bell's inequalities and the fundamental conservation laws," by C. S. Unnikrishnan of the Tata Institute in India. He also discusses the odd "kinks" in Bell's linear predictions of correlations compared to the conservation law curve.

Normal | Teacher | Scholar