Philosophers
Mortimer Adler Rogers Albritton Alexander of Aphrodisias Samuel Alexander William Alston Anaximander G.E.M.Anscombe Anselm Louise Antony Thomas Aquinas Aristotle David Armstrong Harald Atmanspacher Robert Audi Augustine J.L.Austin A.J.Ayer Alexander Bain Mark Balaguer Jeffrey Barrett William Barrett William Belsham Henri Bergson George Berkeley Isaiah Berlin Richard J. Bernstein Bernard Berofsky Robert Bishop Max Black Susanne Bobzien Emil du Bois-Reymond Hilary Bok Laurence BonJour George Boole Émile Boutroux Daniel Boyd F.H.Bradley C.D.Broad Michael Burke Lawrence Cahoone C.A.Campbell Joseph Keim Campbell Rudolf Carnap Carneades Nancy Cartwright Gregg Caruso Ernst Cassirer David Chalmers Roderick Chisholm Chrysippus Cicero Randolph Clarke Samuel Clarke Anthony Collins Antonella Corradini Diodorus Cronus Jonathan Dancy Donald Davidson Mario De Caro Democritus Daniel Dennett Jacques Derrida René Descartes Richard Double Fred Dretske John Dupré John Earman Laura Waddell Ekstrom Epictetus Epicurus Austin Farrer Herbert Feigl Arthur Fine John Martin Fischer Frederic Fitch Owen Flanagan Luciano Floridi Philippa Foot Alfred Fouilleé Harry Frankfurt Richard L. Franklin Bas van Fraassen Michael Frede Gottlob Frege Peter Geach Edmund Gettier Carl Ginet Alvin Goldman Gorgias Nicholas St. John Green H.Paul Grice Ian Hacking Ishtiyaque Haji Stuart Hampshire W.F.R.Hardie Sam Harris William Hasker R.M.Hare Georg W.F. Hegel Martin Heidegger Heraclitus R.E.Hobart Thomas Hobbes David Hodgson Shadsworth Hodgson Baron d'Holbach Ted Honderich Pamela Huby David Hume Ferenc Huoranszki Frank Jackson William James Lord Kames Robert Kane Immanuel Kant Tomis Kapitan Walter Kaufmann Jaegwon Kim William King Hilary Kornblith Christine Korsgaard Saul Kripke Thomas Kuhn Andrea Lavazza Christoph Lehner Keith Lehrer Gottfried Leibniz Jules Lequyer Leucippus Michael Levin Joseph Levine George Henry Lewes C.I.Lewis David Lewis Peter Lipton C. Lloyd Morgan John Locke Michael Lockwood Arthur O. Lovejoy E. Jonathan Lowe John R. Lucas Lucretius Alasdair MacIntyre Ruth Barcan Marcus Tim Maudlin James Martineau Nicholas Maxwell Storrs McCall Hugh McCann Colin McGinn Michael McKenna Brian McLaughlin John McTaggart Paul E. Meehl Uwe Meixner Alfred Mele Trenton Merricks John Stuart Mill Dickinson Miller G.E.Moore Thomas Nagel Otto Neurath Friedrich Nietzsche John Norton P.H.Nowell-Smith Robert Nozick William of Ockham Timothy O'Connor Parmenides David F. Pears Charles Sanders Peirce Derk Pereboom Steven Pinker Plato Karl Popper Porphyry Huw Price H.A.Prichard Protagoras Hilary Putnam Willard van Orman Quine Frank Ramsey Ayn Rand Michael Rea Thomas Reid Charles Renouvier Nicholas Rescher C.W.Rietdijk Richard Rorty Josiah Royce Bertrand Russell Paul Russell Gilbert Ryle Jean-Paul Sartre Kenneth Sayre T.M.Scanlon Moritz Schlick Arthur Schopenhauer John Searle Wilfrid Sellars Alan Sidelle Ted Sider Henry Sidgwick Walter Sinnott-Armstrong J.J.C.Smart Saul Smilansky Michael Smith Baruch Spinoza L. Susan Stebbing Isabelle Stengers George F. Stout Galen Strawson Peter Strawson Eleonore Stump Francisco Suárez Richard Taylor Kevin Timpe Mark Twain Peter Unger Peter van Inwagen Manuel Vargas John Venn Kadri Vihvelin Voltaire G.H. von Wright David Foster Wallace R. Jay Wallace W.G.Ward Ted Warfield Roy Weatherford C.F. von Weizsäcker William Whewell Alfred North Whitehead David Widerker David Wiggins Bernard Williams Timothy Williamson Ludwig Wittgenstein Susan Wolf Scientists David Albert Michael Arbib Walter Baade Bernard Baars Jeffrey Bada Leslie Ballentine Marcello Barbieri Gregory Bateson Horace Barlow John S. Bell Mara Beller Charles Bennett Ludwig von Bertalanffy Susan Blackmore Margaret Boden David Bohm Niels Bohr Ludwig Boltzmann Emile Borel Max Born Satyendra Nath Bose Walther Bothe Jean Bricmont Hans Briegel Leon Brillouin Stephen Brush Henry Thomas Buckle S. H. Burbury Melvin Calvin Donald Campbell Sadi Carnot Anthony Cashmore Eric Chaisson Gregory Chaitin Jean-Pierre Changeux Rudolf Clausius Arthur Holly Compton John Conway Jerry Coyne John Cramer Francis Crick E. P. Culverwell Antonio Damasio Olivier Darrigol Charles Darwin Richard Dawkins Terrence Deacon Lüder Deecke Richard Dedekind Louis de Broglie Stanislas Dehaene Max Delbrück Abraham de Moivre Bernard d'Espagnat Paul Dirac Hans Driesch John Eccles Arthur Stanley Eddington Gerald Edelman Paul Ehrenfest Manfred Eigen Albert Einstein George F. R. Ellis Hugh Everett, III Franz Exner Richard Feynman R. A. Fisher David Foster Joseph Fourier Philipp Frank Steven Frautschi Edward Fredkin Benjamin Gal-Or Howard Gardner Lila Gatlin Michael Gazzaniga Nicholas Georgescu-Roegen GianCarlo Ghirardi J. Willard Gibbs James J. Gibson Nicolas Gisin Paul Glimcher Thomas Gold A. O. Gomes Brian Goodwin Joshua Greene Dirk ter Haar Jacques Hadamard Mark Hadley Patrick Haggard J. B. S. Haldane Stuart Hameroff Augustin Hamon Sam Harris Ralph Hartley Hyman Hartman Jeff Hawkins John-Dylan Haynes Donald Hebb Martin Heisenberg Werner Heisenberg John Herschel Basil Hiley Art Hobson Jesper Hoffmeyer Don Howard John H. Jackson William Stanley Jevons Roman Jakobson E. T. Jaynes Pascual Jordan Eric Kandel Ruth E. Kastner Stuart Kauffman Martin J. Klein William R. Klemm Christof Koch Simon Kochen Hans Kornhuber Stephen Kosslyn Daniel Koshland Ladislav Kovàč Leopold Kronecker Rolf Landauer Alfred Landé Pierre-Simon Laplace Karl Lashley David Layzer Joseph LeDoux Gerald Lettvin Gilbert Lewis Benjamin Libet David Lindley Seth Lloyd Hendrik Lorentz Werner Loewenstein Josef Loschmidt Ernst Mach Donald MacKay Henry Margenau Owen Maroney David Marr Humberto Maturana James Clerk Maxwell Ernst Mayr John McCarthy Warren McCulloch N. David Mermin George Miller Stanley Miller Ulrich Mohrhoff Jacques Monod Vernon Mountcastle Emmy Noether Alexander Oparin Abraham Pais Howard Pattee Wolfgang Pauli Massimo Pauri Wilder Penfield Roger Penrose Steven Pinker Colin Pittendrigh Walter Pitts Max Planck Susan Pockett Henri Poincaré Daniel Pollen Ilya Prigogine Hans Primas Henry Quastler Adolphe Quételet Pasco Rakic Nicolas Rashevsky Lord Rayleigh Jürgen Renn Giacomo Rizzolati Emil Roduner Juan Roederer Jerome Rothstein David Ruelle Tilman Sauer Ferdinand de Saussure Jürgen Schmidhuber Erwin Schrödinger Aaron Schurger Sebastian Seung Thomas Sebeok Franco Selleri Claude Shannon Charles Sherrington David Shiang Abner Shimony Herbert Simon Dean Keith Simonton Edmund Sinnott B. F. Skinner Lee Smolin Ray Solomonoff Roger Sperry John Stachel Henry Stapp Tom Stonier Antoine Suarez Leo Szilard Max Tegmark Teilhard de Chardin Libb Thims William Thomson (Kelvin) Richard Tolman Giulio Tononi Peter Tse Alan Turing Francisco Varela Vlatko Vedral Mikhail Volkenstein Heinz von Foerster Richard von Mises John von Neumann Jakob von Uexküll C. S. Unnikrishnan C. H. Waddington John B. Watson Daniel Wegner Steven Weinberg Paul A. Weiss Herman Weyl John Wheeler Wilhelm Wien Norbert Wiener Eugene Wigner E. O. Wilson Günther Witzany Stephen Wolfram H. Dieter Zeh Semir Zeki Ernst Zermelo Wojciech Zurek Konrad Zuse Fritz Zwicky Presentations Biosemiotics Free Will Mental Causation James Symposium |
The Flatness Problem
When I was a first-year graduate student in astrophysics at Harvard University in 1958, I encountered two problems that have remained with me all these years. One I might have called the "equilibrium problem," although today it is the fundamental problem of information philosophy - What creates the information structures in the universe?"
At Brown I had studied physics and especially the second law of thermodynamics. There I had read Arthur Stanley Eddington's wonderful 1927 book The Nature of the Physical World, his Gifford Lectures, and took away two ideas - that entropy had something to do with values, and that Werner Heisenberg's then new uncertainty principle had put a crack in the idea of determinism, through which he could see a "chink of daylight" in the problem of free will.
I thought I would solve two related problems starting with Eddington's ideas - libertarian free will and the problem of values.
In my philosophy classes at Brown I learned that continental existentialists thought that we are radically free, but that our freedom is absurd, because there are no objective values to help us make choices. Logical positivists had the very opposite idea. There are values, either utilitarianism or a consequence of our human emotions. But Anglo-American philosophy was solidly determinist, certain that laws of nature explained the workings of the universe and so clearly could explain the human mind. There was no free will for them.
If freedom without values is absurd, I thought, values without freedom are useless. The problems need to be solved together.
Back in astrophysics, I saw cosmology and the second law about the inevitable increase of entropy seemed to be in serious conflict. The best opinion about the beginning of the universe in 1958 was that it had started in a state of equilibrium about ten billion years ago.
The "equilibrium problem" I saw at that time was this. "If the universe began in a state of equilibrium, and the second law says that entropy can only increase, why aren't we still in a state of equilibrium?" I asked anyone who might be interested, "How can we be here having this conversation?"
At that time, the universe was thought to be positively curved. Hubble's red shifts of distant galaxies showed that they did not have enough kinetic energy to overcome the gravitational potential energy. Textbooks likened the universe to the surface of an expanding balloon decorated with galaxies moving away from one another.
That balloon popped for me when Walter Baade came to Harvard to describe his wartime work at Mount Wilson. During the war, lights in California cities were blacked out and astronomical seeing was great. There was little competition for observing time, as most astronomers were doing defense work. As a German national, Baade was exempt. He took many images with long exposures of nearby galaxies and discovered there are two distinct populations of stars. And in each population there was a different kind of Cepheid variable star. The period of the Cepheid's curve of light variation indicated its absolute brightness, so they could be used as "standard candles" to find the distances to star clusters in the Milky Way.
Baade then realized that the Cepheids being used to calculate the distance to Andromeda were 1.6 magnitudes brighter than the ones used in our galaxy. Baade said Andromeda must be twice as far away as Hubble had thought.
As I listened to Baade, for me the universe went from being positively curved to negatively curved. It jumped right over the flat universe!
Normal | Teacher | Scholar
This is a situation we are actually approaching. All the non-gravitationally bound systems will slip over our light horizon as the expansion takes them higher than the velocity of light. But note that we will always be able to see back to the cosmic microwave background, all the contents of the universe we see today!
I used to draw a line with tick marks for powers of ten in density around the critical density ρc. We could increase the density of the universe by thirty powers of ten before it would have the same density as the earth (too dense!). But on the lighter side, there are an infinite number of powers of ten. We can't exclude a universe with average density zero, which still allows us to exist, but little else in the distance.
![]()
Information philosophy today suggests a solution. The universe began with a minimum of information. Either a positive or negative curvature requires more, so a flat universe is informationally minimal. QED. Zero energy also requires less information to specify than some amount, so this is again an informational minimum case, though I was not yet an information philosopher in the 1960's.
In a Newtonian universe, the flat case is when the kinetic and potential energies exactly balance, when there is no net energy in the universe. The 1/r2 potential goes to zero at infinity, at which point/time (never reached) the asymptotic kinetic energy is zero.
What I did see is that the universe might consist of equal and opposite amounts of something, such that before t = 0, it was nothing. This would neatly answer Leibniz' great philosophical question, "Why is there something rather than nothing?"
The Flat Universe Today
The standard model of cosmology now assumes that the universe is exactly flat, but that the amount of matter needed is not available in the form of the ordinary matter (baryons, electrons, photons, etc.) that makes up the visible (luminous) universe. The luminous matter can account for only a few percent of the critical density of matter needed for a flat universe. Another 25% or so of an unknown form of dark matter, plus 70% of a "dark energy," thought to be quantum vacuum energy, makes up the balance of the critical density.
Information philosophy can contribute little to the standard model, but it can support an early universe with very little information (negative entropy). As long as the maximum possible entropy increases with the universe expansion, the cosmic creation process can provide the information (negative entropy) in the galaxies, stars, planets, terrestrial life, etc.
|