Citation for this page in APA citation style.           Close

Core Concepts

Adequate Determinism
Alternative Possibilities
Causa Sui
Causal Closure
Chance Not Direct Cause
Chaos Theory
The Cogito Model
Comprehensive   Compatibilism
Conceptual Analysis
Could Do Otherwise
Default Responsibility
Determination Fallacy
Double Effect
Either Way
Emergent Determinism
Epistemic Freedom
Ethical Fallacy
Experimental Philosophy
Extreme Libertarianism
Event Has Many Causes
Frankfurt Cases
Free Choice
Freedom of Action
"Free Will"
Free Will Axiom
Free Will in Antiquity
Free Will Mechanisms
Free Will Requirements
Free Will Theorem
Future Contingency
Hard Incompatibilism
Idea of Freedom
Illusion of Determinism
Laplace's Demon
Liberty of Indifference
Libet Experiments
Master Argument
Modest Libertarianism
Moral Necessity
Moral Responsibility
Moral Sentiments
Paradigm Case
Random When?/Where?
Rational Fallacy
Same Circumstances
Science Advance Fallacy
Second Thoughts
Soft Causality
Special Relativity
Standard Argument
Temporal Sequence
Tertium Quid
Torn Decision
Two-Stage Models
Ultimate Responsibility
Up To Us
What If Dennett and Kane Did Otherwise?


Mortimer Adler
Rogers Albritton
Alexander of Aphrodisias
Samuel Alexander
William Alston
Louise Antony
Thomas Aquinas
David Armstrong
Harald Atmanspacher
Robert Audi
Alexander Bain
Mark Balaguer
Jeffrey Barrett
William Belsham
Henri Bergson
George Berkeley
Isaiah Berlin
Richard J. Bernstein
Bernard Berofsky
Robert Bishop
Max Black
Susanne Bobzien
Emil du Bois-Reymond
Hilary Bok
Laurence BonJour
George Boole
Émile Boutroux
Michael Burke
Joseph Keim Campbell
Rudolf Carnap
Ernst Cassirer
David Chalmers
Roderick Chisholm
Randolph Clarke
Samuel Clarke
Anthony Collins
Antonella Corradini
Diodorus Cronus
Jonathan Dancy
Donald Davidson
Mario De Caro
Daniel Dennett
Jacques Derrida
René Descartes
Richard Double
Fred Dretske
John Dupré
John Earman
Laura Waddell Ekstrom
Herbert Feigl
John Martin Fischer
Owen Flanagan
Luciano Floridi
Philippa Foot
Alfred Fouilleé
Harry Frankfurt
Richard L. Franklin
Michael Frede
Gottlob Frege
Peter Geach
Edmund Gettier
Carl Ginet
Alvin Goldman
Nicholas St. John Green
H.Paul Grice
Ian Hacking
Ishtiyaque Haji
Stuart Hampshire
Sam Harris
William Hasker
Georg W.F. Hegel
Martin Heidegger
Thomas Hobbes
David Hodgson
Shadsworth Hodgson
Baron d'Holbach
Ted Honderich
Pamela Huby
David Hume
Ferenc Huoranszki
William James
Lord Kames
Robert Kane
Immanuel Kant
Tomis Kapitan
Jaegwon Kim
William King
Hilary Kornblith
Christine Korsgaard
Saul Kripke
Andrea Lavazza
Keith Lehrer
Gottfried Leibniz
Michael Levin
George Henry Lewes
David Lewis
Peter Lipton
C. Lloyd Morgan
John Locke
Michael Lockwood
E. Jonathan Lowe
John R. Lucas
Alasdair MacIntyre
Ruth Barcan Marcus
James Martineau
Storrs McCall
Hugh McCann
Colin McGinn
Michael McKenna
Brian McLaughlin
John McTaggart
Paul E. Meehl
Uwe Meixner
Alfred Mele
Trenton Merricks
John Stuart Mill
Dickinson Miller
Thomas Nagel
Friedrich Nietzsche
John Norton
Robert Nozick
William of Ockham
Timothy O'Connor
David F. Pears
Charles Sanders Peirce
Derk Pereboom
Steven Pinker
Karl Popper
Huw Price
Hilary Putnam
Willard van Orman Quine
Frank Ramsey
Ayn Rand
Michael Rea
Thomas Reid
Charles Renouvier
Nicholas Rescher
Richard Rorty
Josiah Royce
Bertrand Russell
Paul Russell
Gilbert Ryle
Jean-Paul Sartre
Kenneth Sayre
Moritz Schlick
Arthur Schopenhauer
John Searle
Wilfrid Sellars
Alan Sidelle
Ted Sider
Henry Sidgwick
Walter Sinnott-Armstrong
Saul Smilansky
Michael Smith
Baruch Spinoza
L. Susan Stebbing
Isabelle Stengers
George F. Stout
Galen Strawson
Peter Strawson
Eleonore Stump
Francisco Suárez
Richard Taylor
Kevin Timpe
Mark Twain
Peter Unger
Peter van Inwagen
Manuel Vargas
John Venn
Kadri Vihvelin
G.H. von Wright
David Foster Wallace
R. Jay Wallace
Ted Warfield
Roy Weatherford
William Whewell
Alfred North Whitehead
David Widerker
David Wiggins
Bernard Williams
Timothy Williamson
Ludwig Wittgenstein
Susan Wolf


Michael Arbib
Bernard Baars
Gregory Bateson
John S. Bell
Charles Bennett
Ludwig von Bertalanffy
Susan Blackmore
Margaret Boden
David Bohm
Niels Bohr
Ludwig Boltzmann
Emile Borel
Max Born
Satyendra Nath Bose
Walther Bothe
Hans Briegel
Leon Brillouin
Stephen Brush
Henry Thomas Buckle
S. H. Burbury
Donald Campbell
Anthony Cashmore
Eric Chaisson
Jean-Pierre Changeux
Arthur Holly Compton
John Conway
John Cramer
E. P. Culverwell
Charles Darwin
Terrence Deacon
Louis de Broglie
Max Delbrück
Abraham de Moivre
Paul Dirac
Hans Driesch
John Eccles
Arthur Stanley Eddington
Paul Ehrenfest
Albert Einstein
Hugh Everett, III
Franz Exner
Richard Feynman
R. A. Fisher
Joseph Fourier
Lila Gatlin
Michael Gazzaniga
GianCarlo Ghirardi
J. Willard Gibbs
Nicolas Gisin
Paul Glimcher
Thomas Gold
Brian Goodwin
Joshua Greene
Jacques Hadamard
Patrick Haggard
Stuart Hameroff
Augustin Hamon
Sam Harris
Hyman Hartman
John-Dylan Haynes
Martin Heisenberg
Werner Heisenberg
John Herschel
Jesper Hoffmeyer
E. T. Jaynes
William Stanley Jevons
Roman Jakobson
Pascual Jordan
Ruth E. Kastner
Stuart Kauffman
Simon Kochen
Stephen Kosslyn
Ladislav Kovàč
Rolf Landauer
Alfred Landé
Pierre-Simon Laplace
David Layzer
Benjamin Libet
Seth Lloyd
Hendrik Lorentz
Josef Loschmidt
Ernst Mach
Donald MacKay
Henry Margenau
James Clerk Maxwell
Ernst Mayr
Ulrich Mohrhoff
Jacques Monod
Emmy Noether
Howard Pattee
Wolfgang Pauli
Massimo Pauri
Roger Penrose
Steven Pinker
Colin Pittendrigh
Max Planck
Susan Pockett
Henri Poincaré
Daniel Pollen
Ilya Prigogine
Hans Primas
Adolphe Quételet
Juan Roederer
Jerome Rothstein
David Ruelle
Erwin Schrödinger
Aaron Schurger
Claude Shannon
David Shiang
Herbert Simon
Dean Keith Simonton
B. F. Skinner
Roger Sperry
Henry Stapp
Tom Stonier
Antoine Suarez
Leo Szilard
William Thomson (Kelvin)
Peter Tse
Heinz von Foerster
John von Neumann
John B. Watson
Daniel Wegner
Steven Weinberg
Paul A. Weiss
John Wheeler
Wilhelm Wien
Norbert Wiener
Eugene Wigner
E. O. Wilson
H. Dieter Zeh
Ernst Zermelo
Wojciech Zurek


Free Will
Mental Causation
James Symposium

Chaos, in many traditional cosmogonies, is the earliest state of the universe. Perhaps surprisingly, this is also the view of modern cosmologists. They see the universe starting in a state of "thermodynamical equilibrium" or maximum entropy about 13.7 billion years ago.
Chaos is often defined as the complete absence of order, and consequently of information. For the Greeks, the opposite of chaos was cosmos, an ordered and beautiful universe.
The Stoic Chrysippus (200 B.C.E.) said that a single uncaused cause could destroy the universe (cosmos), which would fall into chaos.
Everything that happens is followed by something else which depends on it by causal necessity. Likewise, everything that happens is preceded by something with which it is causally connected. For nothing exists or has come into being in the cosmos without a cause. The universe will be disrupted and disintegrate into pieces and cease to be a unity functioning as a single system, if any uncaused movement is introduced into it.
Chaos and the Kinetic Theory of Gases
The name "gas" was coined by a Dutch chemist as a variation on the word "chaos"
The closest thing to perfect chaos in a physical theory is a gas in thermodynamical equilibrium, a state of maximum disorder or maximum entropy. In such a state, the average number of gas particles per unit volume is the same everywhere in the gas. The distribution of velocities in any small volume large enough to contain a very large number of particles is the Maxwell-Boltzmann distribution.

In thermodynamic equilibriun, the average value of any gas property over time is the same as the average value over a large number of identical systems at the same time. This is called the ergodic theorem.

Note that the kinetic theory of gases is a classical dynamical theory. It is thus a deterministic theory. Gas particles are assumed to follow the laws of Newtonian mechanics. Boltzmann's first attempt to derive his H-Theorem (a proof of the second law of thermodynamics) that entropy should always increase, he was criticized by his mentor, Joseph Loschmidt, because since classical mechanical particle paths are time reversible, Boltzmann's proof of entropy increase would mean that if particles could be prepared in a starting with exactly opposite velocities, the entropy should decrease from such a starting state. This was called Loschmidt's reversibility paradox.

Deterministic Chaos
In modern times a mathematical theory of deterministic chaos was developed, largely by computer scientists. They found that small rounding errors in their computer data (which has a limited number of significant figures) leads to large non-linear instabilities that expand exponentially in time and make long-term prediction impossible. This is the famous "butterfly wings in Beijing" effect discovered in weather predictions by the founder of chaos theory, the meteorologist Edward Lorenz.

It is important to stress that there is nothing random or undetermined (it involves no quantum indeterminacy) about this mathematical chaos theory. Although it exhibits behaviors that resemble some phenomena in the real world, they are metaphors for behaviors, not physical explanations.

In addition, chaos should not be confused with unpredictability, just as determinism should not be confused with predictability. The fundamental importance of chaos theory is its application to systems that are extremely sensitive to initial conditions. Chaotic systems are deterministic, but not predictable. Their unpredictability does not mean that they are random or indeterministic, as many philosophers and a few scientists who dislike quantum mechanics have mistakenly believed (e.g., Ilya Prigogine.

Some philosophers appear to believe that chaos theory can provide all the randomness need to prevent free will from being deterministic (e.g., Daniel Dennett). Some think that non-linear chaotic behavior disproves the determinism of Laplace's super-intelligent demon. Laplace probably knew that the information required by the demon was unobtainable. Isaac Newton certainly knew that his observations could not confirm his theory to arbitrary accuracy needed to prove perfect determinism.

Ludwig Boltzmann, his admirer and contemporary Franz Exner, and Exner's student Erwin Schrödinger often pointed out that deterministic theories go beyond the available evidence. Popularization of physical theories has often confused not just the public, but even philosophers of science.

On the three hundredth anniversary of Newton’s Principia, Sir James Lighthill gave a lecture to the Royal Society, lamenting the confusion between Newton's classical mechanical determinism and the apparent claim of perfect predictability:

”We are all deeply conscious today that the enthusiasm of our forebears for the marvellous achievements of Newtonian mechanics led them to make generalizations in this area of predictability which, indeed, we may have generally tended to believe before 1960, but which we now recognize were false. We collectively wish to apologize for having misled the general educated public by spreading ideas about determinism of systems satisfying Newton’s laws of motion that, after 1960, were to be proved incorrect...”

Sensitivity to initial conditions was in fact known long before modern chaos theory and complexity theory. James Clerk Maxwell noted in the 1860's that even if two molecules were adjacent to one another in a hydrodynamic flow, they might find themselves in random places in the container after relatively short mixing times. He wrote:

When the state of things is such that an infinitely small variation of the present state will alter only by an infinitely small quantity the state at some future time, the condition of the system, whether at rest or in motion, is said to be stable; but when an infinitely small variation in the present state may bring about a finite difference in the state of the system in a finite time, the condition of the system is said to be unstable.

The real world is only approximately classical mechanical (obeying Newton's dynamical laws at all scales). At the small scales of atomic and molecular physics, the world is quantum mechanical. There is nothing corresponding to deterministic chaos in quantum physics. Deterministic chaos requires continuous motion to produce mathematical singularities and exponential non-linearity. Despite unpredictable and spontaneous "quantum jumps," the discrete states of the quantum world are more regular and stable than their classical analogues. Indeed, the long-term stability of quantum structures in their "ground states" is astonishing, as is the complete indistinguishability of elementary particles, which gives rise to extremely non-intuitive statistics. Finally, the long-term stability of quantum cooperative phenomena is evident in the ability of biological macromolecules to maintain (by error detection and correction) their information content.

The desire to describe randomness and chance in the world with deterministic chaos resembles the view of Adolphe Quételet and Henry Thomas Buckle that statistical regularities in various physical and social phenomena are evidence of an underlying determinism. Is the motivation similar to that which seeks an intelligent designer behind biological evolution? It seems that the "antipathy to chance" observed by William James at the end of the nineteenth century is alive and well in the twenty-first.

For Teachers
For Scholars
The Rise of Statistical Thinking, 1820-1900, by Theodore Porter, (Princeton, 1986) p.219-247, tells how Charles Sanders Peirce embraces chance as "Tychism." Porter also provides a summary of the influences of Renouvier, Fouillee, and Joseph Delbouef on Peirce.
The Taming of Chance, by Ian Hacking, (Cambridge, 1990) p.11, tells how Peirce attacked the doctrine of necessity. Hacking's thesis is that there was an "erosion of determinism" in the nineteenth century culminating in Peirce.
"To begin with, what is chance? The ancients distinguished between the phenomena which seemed to obey harmonious laws, established once for all, and those that they attributed to chance, which were those that could not be predicted because they were not subject to any law. In each domain the precise laws did not decide everything, they only marked the limits within which chance was allowed to move. In this conception, the word chance had a precise, objective meaning; what was chance for one was also chance for the other and even for the gods.

But this conception is not ours. We have become complete determinists, and even those who wish to reserve the right of human free will at least allow determinism to reign undisputed in the inorganic world. Every phenomenon, however trifling it be, has a cause, and a mind infinitely powerful and infinitely well-informed concerning the laws of nature could have foreseen it from the beginning of the ages. If a being with such a mind existed, we could play no game of chance with him; we should always lose.

For him, in fact, the word chance would have no meaning, or rather there would be no such thing as chance." (Science and Method, Henri Poincare, p.64)

"Just as no physicist will in the last resort acknowledge the play of chance in human nature, so no physiologist will admit the play of chance in the absolute sense." Where Is Science Going, p.147.

"the assumption of chance in inorganic nature is incompatible with the working principle of natural science." Max Planck, Where Is Science Going, p.154.

The De Moivre quote is cited in Hacking, Taming of Chance, p.13.

Chapter 3.7 - The Ergod Chapter 4.2 - The History of Free Will
Part Three - Value Part Five - Problems
Normal | Teacher | Scholar