Citation for this page in APA citation style.           Close


Philosophers

Mortimer Adler
Rogers Albritton
Alexander of Aphrodisias
Samuel Alexander
William Alston
Anaximander
G.E.M.Anscombe
Anselm
Louise Antony
Thomas Aquinas
Aristotle
David Armstrong
Harald Atmanspacher
Robert Audi
Augustine
J.L.Austin
A.J.Ayer
Alexander Bain
Mark Balaguer
Jeffrey Barrett
William Belsham
Henri Bergson
George Berkeley
Isaiah Berlin
Richard J. Bernstein
Bernard Berofsky
Robert Bishop
Max Black
Susanne Bobzien
Emil du Bois-Reymond
Hilary Bok
Laurence BonJour
George Boole
Émile Boutroux
F.H.Bradley
C.D.Broad
Michael Burke
C.A.Campbell
Joseph Keim Campbell
Rudolf Carnap
Carneades
Ernst Cassirer
David Chalmers
Roderick Chisholm
Chrysippus
Cicero
Randolph Clarke
Samuel Clarke
Anthony Collins
Antonella Corradini
Diodorus Cronus
Jonathan Dancy
Donald Davidson
Mario De Caro
Democritus
Daniel Dennett
Jacques Derrida
René Descartes
Richard Double
Fred Dretske
John Dupré
John Earman
Laura Waddell Ekstrom
Epictetus
Epicurus
Herbert Feigl
John Martin Fischer
Owen Flanagan
Luciano Floridi
Philippa Foot
Alfred Fouilleé
Harry Frankfurt
Richard L. Franklin
Michael Frede
Gottlob Frege
Peter Geach
Edmund Gettier
Carl Ginet
Alvin Goldman
Gorgias
Nicholas St. John Green
H.Paul Grice
Ian Hacking
Ishtiyaque Haji
Stuart Hampshire
W.F.R.Hardie
Sam Harris
William Hasker
R.M.Hare
Georg W.F. Hegel
Martin Heidegger
Heraclitus
R.E.Hobart
Thomas Hobbes
David Hodgson
Shadsworth Hodgson
Baron d'Holbach
Ted Honderich
Pamela Huby
David Hume
Ferenc Huoranszki
William James
Lord Kames
Robert Kane
Immanuel Kant
Tomis Kapitan
Jaegwon Kim
William King
Hilary Kornblith
Christine Korsgaard
Saul Kripke
Andrea Lavazza
Keith Lehrer
Gottfried Leibniz
Leucippus
Michael Levin
George Henry Lewes
C.I.Lewis
David Lewis
Peter Lipton
C. Lloyd Morgan
John Locke
Michael Lockwood
E. Jonathan Lowe
John R. Lucas
Lucretius
Alasdair MacIntyre
Ruth Barcan Marcus
James Martineau
Storrs McCall
Hugh McCann
Colin McGinn
Michael McKenna
Brian McLaughlin
John McTaggart
Paul E. Meehl
Uwe Meixner
Alfred Mele
Trenton Merricks
John Stuart Mill
Dickinson Miller
G.E.Moore
Thomas Nagel
Friedrich Nietzsche
John Norton
P.H.Nowell-Smith
Robert Nozick
William of Ockham
Timothy O'Connor
Parmenides
David F. Pears
Charles Sanders Peirce
Derk Pereboom
Steven Pinker
Plato
Karl Popper
Porphyry
Huw Price
H.A.Prichard
Protagoras
Hilary Putnam
Willard van Orman Quine
Frank Ramsey
Ayn Rand
Michael Rea
Thomas Reid
Charles Renouvier
Nicholas Rescher
C.W.Rietdijk
Richard Rorty
Josiah Royce
Bertrand Russell
Paul Russell
Gilbert Ryle
Jean-Paul Sartre
Kenneth Sayre
T.M.Scanlon
Moritz Schlick
Arthur Schopenhauer
John Searle
Wilfrid Sellars
Alan Sidelle
Ted Sider
Henry Sidgwick
Walter Sinnott-Armstrong
J.J.C.Smart
Saul Smilansky
Michael Smith
Baruch Spinoza
L. Susan Stebbing
Isabelle Stengers
George F. Stout
Galen Strawson
Peter Strawson
Eleonore Stump
Francisco Suárez
Richard Taylor
Kevin Timpe
Mark Twain
Peter Unger
Peter van Inwagen
Manuel Vargas
John Venn
Kadri Vihvelin
Voltaire
G.H. von Wright
David Foster Wallace
R. Jay Wallace
W.G.Ward
Ted Warfield
Roy Weatherford
William Whewell
Alfred North Whitehead
David Widerker
David Wiggins
Bernard Williams
Timothy Williamson
Ludwig Wittgenstein
Susan Wolf

Scientists

Michael Arbib
Bernard Baars
Gregory Bateson
John S. Bell
Charles Bennett
Ludwig von Bertalanffy
Susan Blackmore
Margaret Boden
David Bohm
Niels Bohr
Ludwig Boltzmann
Emile Borel
Max Born
Satyendra Nath Bose
Walther Bothe
Hans Briegel
Leon Brillouin
Stephen Brush
Henry Thomas Buckle
S. H. Burbury
Donald Campbell
Anthony Cashmore
Eric Chaisson
Jean-Pierre Changeux
Arthur Holly Compton
John Conway
John Cramer
E. P. Culverwell
Charles Darwin
Terrence Deacon
Louis de Broglie
Max Delbrück
Abraham de Moivre
Paul Dirac
Hans Driesch
John Eccles
Arthur Stanley Eddington
Paul Ehrenfest
Albert Einstein
Hugh Everett, III
Franz Exner
Richard Feynman
R. A. Fisher
Joseph Fourier
Lila Gatlin
Michael Gazzaniga
GianCarlo Ghirardi
J. Willard Gibbs
Nicolas Gisin
Paul Glimcher
Thomas Gold
A.O.Gomes
Brian Goodwin
Joshua Greene
Jacques Hadamard
Patrick Haggard
Stuart Hameroff
Augustin Hamon
Sam Harris
Hyman Hartman
John-Dylan Haynes
Martin Heisenberg
Werner Heisenberg
John Herschel
Jesper Hoffmeyer
E. T. Jaynes
William Stanley Jevons
Roman Jakobson
Pascual Jordan
Ruth E. Kastner
Stuart Kauffman
Martin J. Klein
Simon Kochen
Stephen Kosslyn
Ladislav Kovàč
Rolf Landauer
Alfred Landé
Pierre-Simon Laplace
David Layzer
Benjamin Libet
Seth Lloyd
Hendrik Lorentz
Josef Loschmidt
Ernst Mach
Donald MacKay
Henry Margenau
James Clerk Maxwell
Ernst Mayr
Ulrich Mohrhoff
Jacques Monod
Emmy Noether
Abraham Pais
Howard Pattee
Wolfgang Pauli
Massimo Pauri
Roger Penrose
Steven Pinker
Colin Pittendrigh
Max Planck
Susan Pockett
Henri Poincaré
Daniel Pollen
Ilya Prigogine
Hans Primas
Adolphe Quételet
Juan Roederer
Jerome Rothstein
David Ruelle
Erwin Schrödinger
Aaron Schurger
Claude Shannon
David Shiang
Herbert Simon
Dean Keith Simonton
B. F. Skinner
Roger Sperry
John Stachel
Henry Stapp
Tom Stonier
Antoine Suarez
Leo Szilard
William Thomson (Kelvin)
Peter Tse
Heinz von Foerster
John von Neumann
John B. Watson
Daniel Wegner
Steven Weinberg
Paul A. Weiss
John Wheeler
Wilhelm Wien
Norbert Wiener
Eugene Wigner
E. O. Wilson
H. Dieter Zeh
Ernst Zermelo
Wojciech Zurek

Presentations

Biosemiotics
Free Will
Mental Causation
James Symposium
 
Juan Roederer

Juan Roederer was a research scientist at Werner Heisenberg's Max Planck Institute in the 1950's. In the 1970's he taught a course at the University of Denver on "Physics of the Brain." This led him to the view that information is the fundamental concept that distinguishes physical interactions from biological ones.

Roederer was influenced by Bernd-Olaf Kuppers to the view that "biological information" is not just a subset of physical information, but it is the only information that has "meaning" and "purpose." (Carl Friedrich von Weizsacker had called these "semantic information" and "pragmatic" information.)

In his 2005 book, Information and Its Role in Nature, Roederer asked:

Does the Universe, in its evolution, constantly generate new information? Or are information and information-processing exclusive attributes of living systems, related to the very definition of life? If that were the case (as this book posits), what happens with the physical meanings of entropy in statistical thermodynamics and wave function in quantum mechanics? What is the conceptual difference between classical and quantum information? How many distinct classes of information and information processing do exist in the biological world? How does information appear in Darwinian evolution? Does the human brain have unique properties or capabilities in terms of information processing?
And he explicitly states:
Note that in a natural system we cannot have "information alone" detached from any interaction process past, present or future: Information is always there for a purpose (to evoke a specific change in the recipient that otherwise would not occur, or would happen just by chance) - if there is no purpose, it is not information. Given a complex system, structural form and order alone do not represent information - information appears only when structural form and order lead to specific change elsewhere in a consistent and reproducible manner, with- out involving a direct transfer or interchange of energy. Thus defined, we can speak of information only when it has both a sender and a recipient which exhibits specific changes when the information is delivered (the interaction occurs); this indeed is what is called pragmatic information (e.g., [Kuppers, Information and the Origin of Life]).

Roederer knows that the universe has been generating information structures long before life appeared. He cites Eric Chaisson's book Cosmic Evolution and mentions David Layzer's 1975 Scientific American article on the arrow of time in his bibliography. Layzer was the first scientist to explain how information could be generated in spite of the second law of thermodynamics and the early universe being in a state of thermal equilibrium.

But Roederer says:

We may be tempted to state with Chaisson [24] that "the process of cosmic evolution is continuously generating information." But we must then ask right away: Are the physical, nonbiotic evolutionary processes and respective interactions really using this information? Did this continuously generated information have a purpose and meaning at the time it was generated, or does it have purpose and meaning only now for an intelligent being who is observing and studying the universe?

Perhaps "purpose and meaning" require the human involvement, but the evolution of biological information is only made possible by the cosmic creation process behind the free energy (negative entropy) flows that support all life on Earth. Roederer is looking for an "active" role for information in pre-biological nature and he simply cannot find one, although the creation of material particles and their later organization into galaxies, stars, and planets gives them a major role in the early evolution of the physical universe. And this passive information can be interpreted by living systems as meaningful.

Most scientists would assume that information has been playing a role right from the beginning—the Big Bang. As the Universe evolved, after the gradual condensation of atoms and molecules and the formation of planetary systems, “islands” of increasing complexity and organization appeared, containing discrete aggregates of condensed matter with well-defined boundaries and increasingly complex interactions with each other and their environment. Viewed this way, it indeed seems that the process of cosmic evolution itself is continuously generating information [Chaisson, 2001].

On second thought, however, aren’t we talking here of information for us the observers or thinkers? Did information as such really play an active role in the fundamental physical processes that shaped the Universe? Was information and information-processing involved at all in the evolution of the Universe before living organisms started roaming around and interacting with it, and intelligent beings began studying it? When and where did information begin to play an active role, actually controlling processes in the Universe?

We can agree that there was no "information processing" before living things and their machines, and no information controlling any interaction. But information structures - from the newly formed atoms and molecules to the galaxies, stars, and planets - were major players with an active role in everything happening in the pre-biological universe. Quantum cooperative forces and gravitation were controlling everything, but information was being created continuously from time zero, despite the unstoppable increase in overall entropy.

This increase in information did not depend in any way on intelligent beings, although we now can see it and we benefit enormously from those pre-biological information structures.

Normal | Teacher | Scholar