Citation for this page in APA citation style.           Close


Philosophers

Mortimer Adler
Rogers Albritton
Alexander of Aphrodisias
Samuel Alexander
William Alston
Anaximander
G.E.M.Anscombe
Anselm
Louise Antony
Thomas Aquinas
Aristotle
David Armstrong
Harald Atmanspacher
Robert Audi
Augustine
J.L.Austin
A.J.Ayer
Alexander Bain
Mark Balaguer
Jeffrey Barrett
William Belsham
Henri Bergson
George Berkeley
Isaiah Berlin
Richard J. Bernstein
Bernard Berofsky
Robert Bishop
Max Black
Susanne Bobzien
Emil du Bois-Reymond
Hilary Bok
Laurence BonJour
George Boole
Émile Boutroux
F.H.Bradley
C.D.Broad
Michael Burke
C.A.Campbell
Joseph Keim Campbell
Rudolf Carnap
Carneades
Ernst Cassirer
David Chalmers
Roderick Chisholm
Chrysippus
Cicero
Randolph Clarke
Samuel Clarke
Anthony Collins
Antonella Corradini
Diodorus Cronus
Jonathan Dancy
Donald Davidson
Mario De Caro
Democritus
Daniel Dennett
Jacques Derrida
René Descartes
Richard Double
Fred Dretske
John Dupré
John Earman
Laura Waddell Ekstrom
Epictetus
Epicurus
Herbert Feigl
John Martin Fischer
Owen Flanagan
Luciano Floridi
Philippa Foot
Alfred Fouilleé
Harry Frankfurt
Richard L. Franklin
Michael Frede
Gottlob Frege
Peter Geach
Edmund Gettier
Carl Ginet
Alvin Goldman
Gorgias
Nicholas St. John Green
H.Paul Grice
Ian Hacking
Ishtiyaque Haji
Stuart Hampshire
W.F.R.Hardie
Sam Harris
William Hasker
R.M.Hare
Georg W.F. Hegel
Martin Heidegger
Heraclitus
R.E.Hobart
Thomas Hobbes
David Hodgson
Shadsworth Hodgson
Baron d'Holbach
Ted Honderich
Pamela Huby
David Hume
Ferenc Huoranszki
William James
Lord Kames
Robert Kane
Immanuel Kant
Tomis Kapitan
Jaegwon Kim
William King
Hilary Kornblith
Christine Korsgaard
Saul Kripke
Andrea Lavazza
Keith Lehrer
Gottfried Leibniz
Leucippus
Michael Levin
George Henry Lewes
C.I.Lewis
David Lewis
Peter Lipton
C. Lloyd Morgan
John Locke
Michael Lockwood
E. Jonathan Lowe
John R. Lucas
Lucretius
Alasdair MacIntyre
Ruth Barcan Marcus
James Martineau
Storrs McCall
Hugh McCann
Colin McGinn
Michael McKenna
Brian McLaughlin
John McTaggart
Paul E. Meehl
Uwe Meixner
Alfred Mele
Trenton Merricks
John Stuart Mill
Dickinson Miller
G.E.Moore
Thomas Nagel
Friedrich Nietzsche
John Norton
P.H.Nowell-Smith
Robert Nozick
William of Ockham
Timothy O'Connor
Parmenides
David F. Pears
Charles Sanders Peirce
Derk Pereboom
Steven Pinker
Plato
Karl Popper
Porphyry
Huw Price
H.A.Prichard
Protagoras
Hilary Putnam
Willard van Orman Quine
Frank Ramsey
Ayn Rand
Michael Rea
Thomas Reid
Charles Renouvier
Nicholas Rescher
C.W.Rietdijk
Richard Rorty
Josiah Royce
Bertrand Russell
Paul Russell
Gilbert Ryle
Jean-Paul Sartre
Kenneth Sayre
T.M.Scanlon
Moritz Schlick
Arthur Schopenhauer
John Searle
Wilfrid Sellars
Alan Sidelle
Ted Sider
Henry Sidgwick
Walter Sinnott-Armstrong
J.J.C.Smart
Saul Smilansky
Michael Smith
Baruch Spinoza
L. Susan Stebbing
Isabelle Stengers
George F. Stout
Galen Strawson
Peter Strawson
Eleonore Stump
Francisco Suárez
Richard Taylor
Kevin Timpe
Mark Twain
Peter Unger
Peter van Inwagen
Manuel Vargas
John Venn
Kadri Vihvelin
Voltaire
G.H. von Wright
David Foster Wallace
R. Jay Wallace
W.G.Ward
Ted Warfield
Roy Weatherford
William Whewell
Alfred North Whitehead
David Widerker
David Wiggins
Bernard Williams
Timothy Williamson
Ludwig Wittgenstein
Susan Wolf

Scientists

Michael Arbib
Bernard Baars
Gregory Bateson
John S. Bell
Charles Bennett
Ludwig von Bertalanffy
Susan Blackmore
Margaret Boden
David Bohm
Niels Bohr
Ludwig Boltzmann
Emile Borel
Max Born
Satyendra Nath Bose
Walther Bothe
Hans Briegel
Leon Brillouin
Stephen Brush
Henry Thomas Buckle
S. H. Burbury
Donald Campbell
Anthony Cashmore
Eric Chaisson
Jean-Pierre Changeux
Arthur Holly Compton
John Conway
John Cramer
E. P. Culverwell
Charles Darwin
Terrence Deacon
Louis de Broglie
Max Delbrück
Abraham de Moivre
Paul Dirac
Hans Driesch
John Eccles
Arthur Stanley Eddington
Paul Ehrenfest
Albert Einstein
Hugh Everett, III
Franz Exner
Richard Feynman
R. A. Fisher
Joseph Fourier
Lila Gatlin
Michael Gazzaniga
GianCarlo Ghirardi
J. Willard Gibbs
Nicolas Gisin
Paul Glimcher
Thomas Gold
A.O.Gomes
Brian Goodwin
Joshua Greene
Jacques Hadamard
Patrick Haggard
Stuart Hameroff
Augustin Hamon
Sam Harris
Hyman Hartman
John-Dylan Haynes
Martin Heisenberg
Werner Heisenberg
John Herschel
Jesper Hoffmeyer
E. T. Jaynes
William Stanley Jevons
Roman Jakobson
Pascual Jordan
Ruth E. Kastner
Stuart Kauffman
Simon Kochen
Stephen Kosslyn
Ladislav Kovàč
Rolf Landauer
Alfred Landé
Pierre-Simon Laplace
David Layzer
Benjamin Libet
Seth Lloyd
Hendrik Lorentz
Josef Loschmidt
Ernst Mach
Donald MacKay
Henry Margenau
James Clerk Maxwell
Ernst Mayr
Ulrich Mohrhoff
Jacques Monod
Emmy Noether
Howard Pattee
Wolfgang Pauli
Massimo Pauri
Roger Penrose
Steven Pinker
Colin Pittendrigh
Max Planck
Susan Pockett
Henri Poincaré
Daniel Pollen
Ilya Prigogine
Hans Primas
Adolphe Quételet
Juan Roederer
Jerome Rothstein
David Ruelle
Erwin Schrödinger
Aaron Schurger
Claude Shannon
David Shiang
Herbert Simon
Dean Keith Simonton
B. F. Skinner
Roger Sperry
Henry Stapp
Tom Stonier
Antoine Suarez
Leo Szilard
William Thomson (Kelvin)
Peter Tse
Heinz von Foerster
John von Neumann
John B. Watson
Daniel Wegner
Steven Weinberg
Paul A. Weiss
John Wheeler
Wilhelm Wien
Norbert Wiener
Eugene Wigner
E. O. Wilson
H. Dieter Zeh
Ernst Zermelo
Wojciech Zurek

Presentations

Biosemiotics
Free Will
Mental Causation
James Symposium
 
Werner Heisenberg
In 1925 Max Born, Werner Heisenberg, and Pascual Jordan, formulated their matrix mechanics version of quantum mechanics as a superior formulation of Niels Bohr's old quantum theory. The matrix mechanics confirmed discrete states and "quantum jumps" of electrons between the energy levels, with emission or absorption of radiation. But they did not yet accept today's standard textbook view that the radiation is also discrete and in the form of Albert Einstein's light quanta, about to be renamed "photons" by Gilbert Lewis in late 1926.
In early 1926, Erwin Schrödinger developed wave mechanics as an alternative formulation of quantum mechanics. Schrödinger disliked the idea of discontinuous quantum jumps. His wave mechanics was a continuous theory, but it predicted the same energy levels and was otherwise identical to the discrete theory in its predictions. Indeed, Schrödinger proved that matrix mechanics and his wave mechanics were isomorphic theories.
Within months of the new wave mechanics, Max Born showed that while Schrödinger's wave function evolved over time deterministically, it only predicted the positions and velocities of atomic particles probabilistically. Born applied to matter Einstein's view that the waves of radiation could be interpreted as probabilities for finding light quanta, which was described as public knowledge as early as in 1921 by H. A. Lorentz.
Heisenberg used Schrödinger's wave functions to calculate the "transition probabilities" for electrons to jump from one energy level to another. Schrödinger's wave mechanics was easier to visualize and much easier to calculate than Heisenberg's own matrix mechanics.
In early 1927, Heisenberg announced his indeterminacy principle limiting our knowledge of the simultaneous position and velocity of atomic particles, and declared that the new quantum theory disproved causality. "We cannot - and here is where the causal law breaks down - explain why a particular atom will decay at one moment and not the next, or what causes it to emit an electron in this direction rather than that." Albert Einstein had shown this in his 1917 paper on the emission and absorption of light by matter.
More popularly known as the Uncertainty Principle in quantum mechanics, it states that the exact position and momentum of an atomic particle can only be known within certain (sic) limits. The product of the position error and the momentum error is greater than or equal to Planck's constant h divided by 2π.

ΔpΔx = h/2π          (1)

Indeterminacy (Unbestimmtheit) was Heisenberg's original name for his principle. It is a better name than the more popular uncertainty, which connotes lack of knowledge. The Heisenberg principle is an ontological as well as epistemic lack of information.

Causality
Heisenberg was convinced that quantum mechanics had put an end to classical ideas of causality and strict determinism.

In his classic paper introducing the principle of indeterminacy, he concluded with remarks about causality.

If one assumes that the interpretation of quantum mechanics is already correct in its essential points, it may be permissible to outline briefly its consequences of principle. We have not assumed that quantum theory — in opposition to classical theory — is an essentially statistical theory in the sense that only statistical conclusions can be drawn from precise initial data. The well-known experiments of Geiger and Bothe, for example, speak directly against such an assumption. Rather, in all cases in which relations exist in classical theory between quantities which are really all exactly measurable, the corresponding exact relations also hold in quantum theory (laws of conservation of momentum and energy).
Even in classical mechanics we could never practically know the present exactly, vitiating Laplace's demon
But what is wrong in the sharp formulation of the law of causality, "When we know the present precisely, we can predict the future," it is not the conclusion but the assumption that is false. Even in principle we cannot know the present in all detail. For that reason everything observed is a selection from a plenitude of possibilities and a limitation on what is possible in the future. As the statistical character of quantum theory is so closely linked to the inexactness of all perceptions, one might be led to the presumption that behind the perceived statistical world there still hides a "real" world in which causality holds. But such speculations seem to us, to say it explicitly, fruitless and senseless. Physics ought to describe only the correlation of observations. One can express the true state of affairs better in this way : Because all experiments are subject to the laws of quantum mechanics, and therefore to equation (1), it follows that quantum mechanics establishes the final failure of causality.
But Heisenberg was not convinced that the lack of causality helped with the problem of human freedom. He reportedly said, "We no longer have any sympathy today for the concept of 'free will'." On the other hand, his close colleague, Carl von Weizsäcker, said that Heisenberg thought about the problem of free will "all the time." (Owen Gingerich, personal communication)

On Einstein's Light Quanta
Heisenberg must have known that Einstein had introduced probability and causality into physics in his 1916 work on the emission and absorption of light quanta, with his explanation of transition probabilities and discovery of stimulated emission.

But Heisenberg gives little credit to Einstein. In his letters to Einstein, he acknowledges that Einstein's work is relevant to indeterminacy, but does not follow through on exactly how it is relevant. And as late as the Spring of 1926, perhaps following Niels Bohr, he is not convinced of the reality of light quanta. "Whether or not I should believe in light quanta, I cannot say at this stage," he says. After Heisenberg's talk on matrix mechanics at the University of Berlin, Einstein invited him to take a walk and discuss some basic questions:

I apparently managed to arouse Einstein's interest/for he invited me to walk home with him so that we might discuss the new ideas at greater length. On the way, he asked about my studies and previous research. As soon as we were indoors, he opened the conversation with a question that bore on the philosophical background of my recent work. "What you have told us sounds extremely strange. You assume the existence of electrons inside the atom, and you are probably quite right to do so. But you refuse to consider their orbits, even though we can observe electron tracks in a cloud chamber. I should very much like to hear more about your reasons for making such strange assumptions."

"We cannot observe electron orbits inside the atom," I must have replied, "but the radiation which an atom emits during discharges enables us to deduce the frequencies and corresponding amplitudes of its electrons. After all, even in the older physics wave numbers and amplitudes could be considered substitutes for electron orbits. Now, since a good theory must be based on directly observable magnitudes, I thought it more fitting to restrict myself to these, treating them, as it were, as representatives of the electron orbits."

"But you don't seriously believe," Einstein protested, "that none but observable magnitudes must go into a physical theory?"

"Isn't that precisely what you have done with relativity?" I asked in some surprise. "After all, you did stress the fact that it is impermissible to speak of absolute time, simply because absolute time cannot be observed; that only clock readings, be it in the moving reference system or the system at rest, are relevant to the determination of time."

"Possibly I did use this kind of reasoning," Einstein admitted, "but it is nonsense all the same. Perhaps I could put it more diplomatically by saying that it may be heuristically useful to keep in mind what one has actually observed. But on principle, it is quite wrong to try founding a theory on observable magnitudes alone. In reality the very opposite happens. It is the theory which decides what we can observe. You must appreciate that observation is a very complicated process. The phenomenon under observation produces certain events in our measuring apparatus. As a result, further processes take place in the apparatus, which eventually and by complicated paths produce sense impressions and help us to fix the effects in our consciousness. Along this whole path - from the phenomenon to its fixation in our consciousness — we must be able to tell how nature functions, must know the natural laws at least in practical terms, before we can claim to have observed anything at all. Only theory, that is, knowledge of natural laws, enables us to deduce the underlying phenomena from our sense impressions. When we claim that we can observe something new, we ought really to be saying that, although we are about to formulate new natural laws that do not agree with the old ones, we nevertheless assume that the existing laws — covering the whole path from the phenomenon to our consciousness—function in such a way that we can rely upon them and hence speak of'observations'...

"We shall talk about it again in a few years' time. But perhaps I may put another question to you. Quantum theory as you have expounded it in your lecture has two distinct faces. On the one hand, as Bohr himself has rightly stressed, it explains the stability of the atom; it causes the same forms to reappear time and again. On the other hand, it explains that strange discontinuity or inconstancy of nature which we observe quite clearly when we watch flashes of light on a scintillation screen. These two aspects are obviously connected. In your quantum mechanics you will have to take both into account, for instance when you speak of the emission of light by atoms. You can calculate the discrete energy values of the stationary states. Your theory can thus account for the stability of certain forms that cannot merge continuously into one another, but must differ by finite amounts and seem capable of permanent re-formation. But what happens during the emission of light?

It is astonishing that Einstein has to remind Heisenberg of what is now the standard textbook view, that quantum jumps of electrons are accompanied by emission and absorption of light quanta (photons)
As you know, I suggested that, when an atom drops suddenly from one stationary energy value to the next, it emits the energy difference as an energy packet, a so-called light quantum. In that case, we have a particularly clear example of discontinuity. Do you think that my conception is correct? Or can you describe the transition from one stationary state to another in a more precise way?"

In my reply, I must have said something like this: "Bohr has taught me that one cannot describe this process by means of the traditional concepts, i.e., as a process in time and space. With that, of course, we have said very little, no more, in fact, than that we do not know. Whether or not I should believe in light quanta, I cannot say at this stage. Radiation quite obviously involves the discontinuous elements to which you refer as light quanta. On the other hand, there is a continuous element, which appears, for instance, in interference phenomena, and which is much more simply described by the wave theory of light. But you are of course quite right to ask whether quantum mechanics has anything new to say on these terribly difficult problems. I believe that we may at least hope that it will one day.

"I could, for instance, imagine that we should obtain an interesting answer if we considered the energy fluctuations of an atom during reactions with other atoms or with the radiation field. If the energy should change discontinuously, as we expect from your theory of light quanta, then the fluctuation, or, in more precise mathematical terms, the mean square fluctuation, would be greater than if the energy changed continuously. I am inclined to believe that quantum mechanics would lead to the greater value, and so establish the discontinuity. On the other hand, the continuous element, which appears in interference experiments, must also be taken into account. Perhaps one must imagine the transitions from one stationary state to the next as so many fade-outs in a film. The change is not sudden—one picture gradually fades while the next comes into focus so that, for a time, both pictures become confused and one does not know which is which. Similarly, there may well be an intermediate state in which we cannot tell whether an atom is in the upper or the lower state."

"You are moving on very thin ice," Einstein warned me. "For you are suddenly speaking of what we know about nature and no longer about what nature really does. In science we ought to be concerned solely with what nature does. It might very well be that you and I know quite different things about nature. But who would be interested in that? Perhaps you and I alone. To everyone else it is a matter of complete indifference. In other words, if your theory is right, you will have to tell me sooner or later what the atom does when it passes from one stationary state to the next"

"Perhaps," I may have answered. "But it seems to me that you are using language a little too strictly. Still, I do admit that everything that I might now say may sound like a cheap excuse. So let's wait and see how atomic theory develops."

Einstein gave me a skeptical look. "How can you really have so much faith in your theory when so many crucial problems remain completely unsolved?"

Works
Talk with Einstein (1926) (PDF)

Bohr-Schrödinger Meeting (1926) (PDF)

Uncertainty Principle (1927) (PDF in German)

History of Quantum Theory (PDF)

The Copenhagen Interpretation of Quantum Theory (1955, Annotated) <

The Copenhagen Interpretation of Quantum Theory (1955) (PDF)

For Teachers
For Scholars

Chapter 1.5 - The Philosophers Chapter 2.1 - The Problem of Knowledge
Home Part Two - Knowledge
Normal | Teacher | Scholar