Philosophers
Mortimer Adler Rogers Albritton Alexander of Aphrodisias Samuel Alexander William Alston Anaximander G.E.M.Anscombe Anselm Louise Antony Thomas Aquinas Aristotle David Armstrong Harald Atmanspacher Robert Audi Augustine J.L.Austin A.J.Ayer Alexander Bain Mark Balaguer Jeffrey Barrett William Barrett William Belsham Henri Bergson George Berkeley Isaiah Berlin Richard J. Bernstein Bernard Berofsky Robert Bishop Max Black Susanne Bobzien Emil du Bois-Reymond Hilary Bok Laurence BonJour George Boole Émile Boutroux Daniel Boyd F.H.Bradley C.D.Broad Michael Burke Jeremy Butterfield Lawrence Cahoone C.A.Campbell Joseph Keim Campbell Rudolf Carnap Carneades Nancy Cartwright Gregg Caruso Ernst Cassirer David Chalmers Roderick Chisholm Chrysippus Cicero Tom Clark Randolph Clarke Samuel Clarke Anthony Collins Antonella Corradini Diodorus Cronus Jonathan Dancy Donald Davidson Mario De Caro Democritus Daniel Dennett Jacques Derrida René Descartes Richard Double Fred Dretske John Dupré John Earman Laura Waddell Ekstrom Epictetus Epicurus Austin Farrer Herbert Feigl Arthur Fine John Martin Fischer Frederic Fitch Owen Flanagan Luciano Floridi Philippa Foot Alfred Fouilleé Harry Frankfurt Richard L. Franklin Bas van Fraassen Michael Frede Gottlob Frege Peter Geach Edmund Gettier Carl Ginet Alvin Goldman Gorgias Nicholas St. John Green H.Paul Grice Ian Hacking Ishtiyaque Haji Stuart Hampshire W.F.R.Hardie Sam Harris William Hasker R.M.Hare Georg W.F. Hegel Martin Heidegger Heraclitus R.E.Hobart Thomas Hobbes David Hodgson Shadsworth Hodgson Baron d'Holbach Ted Honderich Pamela Huby David Hume Ferenc Huoranszki Frank Jackson William James Lord Kames Robert Kane Immanuel Kant Tomis Kapitan Walter Kaufmann Jaegwon Kim William King Hilary Kornblith Christine Korsgaard Saul Kripke Thomas Kuhn Andrea Lavazza Christoph Lehner Keith Lehrer Gottfried Leibniz Jules Lequyer Leucippus Michael Levin Joseph Levine George Henry Lewes C.I.Lewis David Lewis Peter Lipton C. Lloyd Morgan John Locke Michael Lockwood Arthur O. Lovejoy E. Jonathan Lowe John R. Lucas Lucretius Alasdair MacIntyre Ruth Barcan Marcus Tim Maudlin James Martineau Nicholas Maxwell Storrs McCall Hugh McCann Colin McGinn Michael McKenna Brian McLaughlin John McTaggart Paul E. Meehl Uwe Meixner Alfred Mele Trenton Merricks John Stuart Mill Dickinson Miller G.E.Moore Thomas Nagel Otto Neurath Friedrich Nietzsche John Norton P.H.Nowell-Smith Robert Nozick William of Ockham Timothy O'Connor Parmenides David F. Pears Charles Sanders Peirce Derk Pereboom Steven Pinker U.T.Place Plato Karl Popper Porphyry Huw Price H.A.Prichard Protagoras Hilary Putnam Willard van Orman Quine Frank Ramsey Ayn Rand Michael Rea Thomas Reid Charles Renouvier Nicholas Rescher C.W.Rietdijk Richard Rorty Josiah Royce Bertrand Russell Paul Russell Gilbert Ryle Jean-Paul Sartre Kenneth Sayre T.M.Scanlon Moritz Schlick John Duns Scotus Arthur Schopenhauer John Searle Wilfrid Sellars David Shiang Alan Sidelle Ted Sider Henry Sidgwick Walter Sinnott-Armstrong Peter Slezak J.J.C.Smart Saul Smilansky Michael Smith Baruch Spinoza L. Susan Stebbing Isabelle Stengers George F. Stout Galen Strawson Peter Strawson Eleonore Stump Francisco Suárez Richard Taylor Kevin Timpe Mark Twain Peter Unger Peter van Inwagen Manuel Vargas John Venn Kadri Vihvelin Voltaire G.H. von Wright David Foster Wallace R. Jay Wallace W.G.Ward Ted Warfield Roy Weatherford C.F. von Weizsäcker William Whewell Alfred North Whitehead David Widerker David Wiggins Bernard Williams Timothy Williamson Ludwig Wittgenstein Susan Wolf Scientists David Albert Michael Arbib Walter Baade Bernard Baars Jeffrey Bada Leslie Ballentine Marcello Barbieri Gregory Bateson Horace Barlow John S. Bell Mara Beller Charles Bennett Ludwig von Bertalanffy Susan Blackmore Margaret Boden David Bohm Niels Bohr Ludwig Boltzmann Emile Borel Max Born Satyendra Nath Bose Walther Bothe Jean Bricmont Hans Briegel Leon Brillouin Stephen Brush Henry Thomas Buckle S. H. Burbury Melvin Calvin Donald Campbell Sadi Carnot Anthony Cashmore Eric Chaisson Gregory Chaitin Jean-Pierre Changeux Rudolf Clausius Arthur Holly Compton John Conway Jerry Coyne John Cramer Francis Crick E. P. Culverwell Antonio Damasio Olivier Darrigol Charles Darwin Richard Dawkins Terrence Deacon Lüder Deecke Richard Dedekind Louis de Broglie Stanislas Dehaene Max Delbrück Abraham de Moivre Bernard d'Espagnat Paul Dirac Hans Driesch John Eccles Arthur Stanley Eddington Gerald Edelman Paul Ehrenfest Manfred Eigen Albert Einstein George F. R. Ellis Hugh Everett, III Franz Exner Richard Feynman R. A. Fisher David Foster Joseph Fourier Philipp Frank Steven Frautschi Edward Fredkin Augustin-Jean Fresnel Benjamin Gal-Or Howard Gardner Lila Gatlin Michael Gazzaniga Nicholas Georgescu-Roegen GianCarlo Ghirardi J. Willard Gibbs James J. Gibson Nicolas Gisin Paul Glimcher Thomas Gold A. O. Gomes Brian Goodwin Joshua Greene Dirk ter Haar Jacques Hadamard Mark Hadley Patrick Haggard J. B. S. Haldane Stuart Hameroff Augustin Hamon Sam Harris Ralph Hartley Hyman Hartman Jeff Hawkins John-Dylan Haynes Donald Hebb Martin Heisenberg Werner Heisenberg John Herschel Basil Hiley Art Hobson Jesper Hoffmeyer Don Howard John H. Jackson William Stanley Jevons Roman Jakobson E. T. Jaynes Pascual Jordan Eric Kandel Ruth E. Kastner Stuart Kauffman Martin J. Klein William R. Klemm Christof Koch Simon Kochen Hans Kornhuber Stephen Kosslyn Daniel Koshland Ladislav Kovàč Leopold Kronecker Rolf Landauer Alfred Landé Pierre-Simon Laplace Karl Lashley David Layzer Joseph LeDoux Gerald Lettvin Gilbert Lewis Benjamin Libet David Lindley Seth Lloyd Werner Loewenstein Hendrik Lorentz Josef Loschmidt Alfred Lotka Ernst Mach Donald MacKay Henry Margenau Owen Maroney David Marr Humberto Maturana James Clerk Maxwell Ernst Mayr John McCarthy Warren McCulloch N. David Mermin George Miller Stanley Miller Ulrich Mohrhoff Jacques Monod Vernon Mountcastle Emmy Noether Donald Norman Travis Norsen Alexander Oparin Abraham Pais Howard Pattee Wolfgang Pauli Massimo Pauri Wilder Penfield Roger Penrose Steven Pinker Colin Pittendrigh Walter Pitts Max Planck Susan Pockett Henri Poincaré Daniel Pollen Ilya Prigogine Hans Primas Zenon Pylyshyn Henry Quastler Adolphe Quételet Pasco Rakic Nicolas Rashevsky Lord Rayleigh Frederick Reif Jürgen Renn Giacomo Rizzolati A.A. Roback Emil Roduner Juan Roederer Jerome Rothstein David Ruelle David Rumelhart Robert Sapolsky Tilman Sauer Ferdinand de Saussure Jürgen Schmidhuber Erwin Schrödinger Aaron Schurger Sebastian Seung Thomas Sebeok Franco Selleri Claude Shannon Charles Sherrington Abner Shimony Herbert Simon Dean Keith Simonton Edmund Sinnott B. F. Skinner Lee Smolin Ray Solomonoff Roger Sperry John Stachel Henry Stapp Tom Stonier Antoine Suarez Leo Szilard Max Tegmark Teilhard de Chardin Libb Thims William Thomson (Kelvin) Richard Tolman Giulio Tononi Peter Tse Alan Turing C. S. Unnikrishnan Francisco Varela Vlatko Vedral Vladimir Vernadsky Mikhail Volkenstein Heinz von Foerster Richard von Mises John von Neumann Jakob von Uexküll C. H. Waddington John B. Watson Daniel Wegner Steven Weinberg Paul A. Weiss Herman Weyl John Wheeler Jeffrey Wicken Wilhelm Wien Norbert Wiener Eugene Wigner E. O. Wilson Günther Witzany Stephen Wolfram H. Dieter Zeh Semir Zeki Ernst Zermelo Wojciech Zurek Konrad Zuse Fritz Zwicky Presentations Biosemiotics Free Will Mental Causation James Symposium |
John Stewart Bell
In 1964 John Bell analyzed David Bohm's 1952 suggestion for "hidden variables" added to the 1935 "thought experiments" of Einstein, Podolsky, and Rosen (EPR) which could make them into real experiments.
Bell put limits on local "hidden variables" in the form of what he called an "inequality," the violation of which would confirm standard quantum mechanics and disprove "local hidden variables."
Some thinkers, mostly philosophers of science rather than working quantum physicists, think that the work of Bohm and Bell has restored the determinism in physics that Einstein had hoped to restore and that Bohm and/or Bell had discovered the "local elements of reality" that Einstein hoped for in EPR.
But Bell himself came to the conclusion that local "hidden variables" will never be found that give the same results as quantum mechanics. This has come to be known as Bell's Theorem.
All theories that reproduce the predictions of quantum mechanics will be "nonlocal," Bell concluded. Nonlocality is an element of physical reality and it has produced some remarkable new applications of quantum physics, including quantum cryptography and quantum computing. Critically important, nonlocality is not a superluminal action at a distance.
See how a Common Cause, Constant of the Motion, and Spherical Symmetry can produce the perfectly correlated (and random) outcomes of two-particle Bell experiments.
Bohm proposed an improvement on the original EPR experiment (which measured continuous position and momentum variables). Bohm's reformulation of quantum mechanics postulates (undetectable) deterministic positions and trajectories for atomic particles, where the instantaneous collapse happens in a new "quantum potential" field that can move faster than light speed. But it is still a "nonlocal" theory.
So Bohm (and Bell) believed that nonlocal "hidden variables" might exist, and that new information can come into existence at remote "space-like separations" at speeds faster then light, if not instantaneously. This is the complicated idea of entanglement, which information philosophy explains with a common cause and a hidden constant of the motion, but without the nonsense of superluminal signaling.
The original EPR paper was based on a question of Einstein's about two particles fired in opposite directions from a central source with equal velocities. Einstein imagined them starting from a distance at t0 and approaching one another with high velocities, then for a short time interval from t1 to t1 + Δt in contact with one another, where experimental measurements could be made on the momenta, after which they separate. Now at a later time t2 it would be possible to make a measurement of particle 1's position and would therefore know the position of particle 2 without measuring it explicitly.
Einstein implicitly used the conservation of linear momentum to "know" the symmetric position of the other particle. This knowledge implies information about the remote particle that is available instantly. Einstein called this "spooky action-at-a-distance." It would much better have been called "knowledge-at-a-distance."
Bohm and his colleague Yakir Aharonov in 1957 proposed a new EPR-like thought experiment using two electrons that are prepared in an initial state of known total spin zero. Instead of measuring continuous variables position and momentum as in EPR, Bohm measures the discrete property of electron spin. If one electron spin is 1/2 in the up direction and the other is spin down or -1/2, the total spin is zero. The underlying physical law of importance is still a conservation law, in this case the conservation of spin angular momentum.
ψ12 = (1/√2) [ ψ+ (1) ψ- (2) - ψ- (1) ψ+ (2) ]
We can simplify the notation
| ψ12 > = 1/√2) | + - > - 1/√2) | - + >
Note that this combination preserves the total electron spin as zero and it offers no preferred spatial direction. Note also that under exchange of the two indistinguishable fermions, the antisymmetric wave function changes its sign, thus the minus sign in the above equations.
Quantum mechanics predicts that a measurement will find the system in either | + - > or | - + >, each with 50% probability. So whichever the outcome, the conservation of angular momentum (spin) will still be true.
The initial entanglement prepared the system in a state with total spin zero, conserving angular momentum. Quantum mechanics predicts that a measurement will disentangle the particles but leave them randomly in one of two states, either of which have total spin zero, again conserving angular momentum. Many thousands of Bell tests have all confirmed that measurements made at the same angle find opposite spins with total spin zero, experimentally showing that conservation of angular momentum was true at final measurement.
As long as there is no environmental interaction between the initial and final states, as long as conditions permit the rotational symmetry to be maintained from start to finish, what mechanism could possibly cause the conservation law for angular momentum to be violated? Assuming conservation were violated and it must be restored to opposite spins by some instantaneous action-at-a-distance, how could one particle determine the deviant spin of its partner, what faster-than-light interaction mechanism could precisely re-align its deviant partner? This is absolute nonsense.
At the moment of first measurement by either observer, the two-particle wave function ψ12 "collapses", that is, it changes its values everywhere instantly.
This is the true essence of quantum nonlocality, nothing moving, but changes everywhere!
Erwin Schrödinger described that measurement as "disentangling" the particles. This is the separation of the two particles that Einstein was hoping for. He called it his Trennungsprinzip (separability principle) and argued the particles would become independent simply when they have gotten far enough apart. But this was a mistake.
Replying to Einstein's EPR paper in 1936, Schrödinger wrote
This would mean that not only the parts, but the whole system, would be in the situation of a mixture, not of a pure state. It would not preclude the possibility of determining the state of the first system by suitable measurements in the second one or vice versa. But it would utterly eliminate the experimenters influence on the state of that system which he does not touch.Schrödinger then describes the puzzle of entanglement in terms of what one can answer to questions about the two entangled particles. Schrödinger thus set an unfortunate precedent of explaining entanglement in terms of knowledge (epistemology/epistemic) about the entangled particles rather than what may "really" be going on (ontology/ontic). Many modern explanations of entanglement use a logical analysis of yes/no answers to questions or "instruction sets" with those answers thought to be accompanying each particle as "hidden variables." These include today's CHSH version of the Bell inequality and David Mermin's famous gedanken experiment version. the result of measuring p1 serves to predict the result for p2 and vice versa. But of course every one of the four observations in question, when actually performed, disentangles the systems, furnishing each of them with an independent representative of its own. A second observation, whatever it is and on whichever system it is executed, produces no further change in the representative of the other system. Yet since I can predict either x1 or p1 without interfering with system No. 1 and since system No. 1, like a scholar in examination, cannot possibly know which of the two questions I am going to ask it first: it so seems that our scholar is prepared to give the right answer to the first question he is asked, anyhow. Therefore he must know both answers; which is an amazing knowledge.In his 1964 paper "On the Einstein-Podolsky-Rosen Paradox," Bell made the case for nonlocality, which he thought might require pre-determination. The paradox of Einstein, Podolsky and Rosen was advanced as an argument that quantum mechanics could not be a complete theory but should be supplemented by additional variables. These additional variables were to restore to the theory causality and locality. In this note that idea will be formulated mathematically and shown to be incompatible with the statistical predictions of quantum mechanics. It is the requirement of locality, or more precisely that the result of a measurement on one system be unaffected by operations on a distant system with which it has interacted in the past, that creates the essential difficulty. There have been attempts to show that even without such a separability or locality requirement no 'hidden variable' interpretation of quantum mechanics is possible. These attempts have been examined [by Bell] elsewhere and found wanting. Moreover, a hidden variable interpretation of elementary quantum theory has been explicitly constructed [by Bohm]. That particular interpretation has indeed a gross non-local structure. This is characteristic, according to the result to be proved here, of any such theory which reproduces exactly the quantum mechanical predictions. With the example advocated by Bohm and Aharonov, the EPR argument is the following. Consider a pair of spin one-half particles formed somehow in the singlet spin state and moving freely in opposite directions. Measurements can be made, say by Stern-Gerlach magnets, on selected components of the spins σ1 and σ2. If measurement of the component σ1 • a, where a is some unit vector, yields the value + 1 then, according to quantum mechanics, measurement of σ2 • a must yield the value — 1 and vice versa. [Here Bell is conserving total spin.] Now we make the hypothesis, and it seems one at least worth considering, that if the two measurements are made at places remote from one another the orientation of one magnet does not influence the result obtained with the other.Bell describes explicitly how the "measurement of the component σ1 • a, where a is some unit vector, yields the value + 1 then, according to quantum mechanics, measurement of σ2 • a must yield the value — 1 and vice versa." He also says "since we can predict in advance the result of measuring any chosen component of σ2, by previously measuring the same component of σ1, it follows that the result of any such measurement must actually be predetermined." If Alice measures the electron spin of particle 1 in the x-direction as +ℏ/2, then Bob will measure a perfectly anti-correlated -ℏ/2 for particle 2, if (and only if) he measures at the same (pre-agreed upon) angle as Alice. Note that since it was quantum random whether the two particle state would be projected into | + - > or into - + >, successive measurements by Alice and Bob will generate two perfectly random and anti-correlated strings of + and - (or 0 and 1 bit strings). This is exactly what is needed for keys in quantum cryptography. Each individual string is random, but the two bit strings are perfectly correlated (or anti-correlated). And the strings have been generated in separated locations over secure communications channels that cannot be eavesdropped, the ideal for quantum key distribution (QKD). A decade later, Bell titled his 1976 review of the first tests of his theorem about his predicted inequalities, "Einstein-Podolsky-Rosen Experiments." He described his talk as about the "foundations of quantum mechanics," and it was the early days of a movement by a few scientists and many philosophers of science to challenge the "orthodox" quantum mechanics. They particularly attacked the Copenhagen Interpretation, with its notorious speculations about the role of the "conscious observer" and its attacks on physical reality. Some anti-realists went beyond the reasonable claim that objects have no properties until they are measured to the extreme claim that particles do not exist when they are not measured. From the earliest presentations in the late 1920's of the ideas of the supposed "founders" of quantum mechanics, Einstein had deep misgivings of the work going on in Copenhagen, although he never doubted the calculating power of their new mathematical methods, and he came to accept the statistical (indeterministic) nature of quantum physics, which he himself had reluctantly discovered in his 1916 study of the atomic emission of light quanta. He described their work as "incomplete" because it is based on the statistical results of many experiments so it can only make probabilistic predictions about individual experiments. Nevertheless, Einstein hoped to visualize what is going on in an underlying "objective reality." Bell was deeply sympathetic to Einstein's hopes for a return to the "local reality" of classical physics. He identified the EPR paper's title, "Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?" as a search for new variables (as had Bohm) to provide the completeness. Bell thought David Bohm's "hidden variables' were one way to achieve this, though Einstein had called Bohm's approach "too cheap," probably because Bohm included "quantum potentials" traveling faster than light speed, an obvious violation of Einstein's special theory of relativity. In his 1976 review, Bell wrote... I have been invited to speak on “foundations of quantum mechanics”... The area in question is that of Einstein, Podolsky, and Rosen. Suppose for example, that protons of a few MeV energy are incident on a hydrogen target. Occasionally one will scatter, causing a target proton to recoil. Suppose (Fig. 1) that we have counter telescopes T1 and T2 which register when suitable protons are going towards distant counters C1 and C2. With ideal arrangements, registering of both T1 and T2 will then imply registering of both C1 and C2 after appropriate time decays [delays?]. Suppose next that C1 and C2 are preceded by filters that pass only particles of given polarization, say those with spin projection +1 along the z axis. Then one or both of C1and C2 may fail to register. Indeed for protons of suitable energy one and only one of these counters will register on almost every suitable occasion — i.e., those occasions certified as suitable by telescopes T1 and T2. This is because proton-proton scattering at large angle and low energy, say a few MeV, goes mainly in S wave. But the antisymmetry of the final wave function then requires the antisymmetric singlet spin state. In this state, when one spin is found “up” the other is found “down”. This follows formally from the quantum expectation valueSince Bell's original work, many other physicists have defined other "Bell inequalities" and developed increasingly sophisticated experiments to test them. Most recent tests have used oppositely polarized photons coming from a central source. Here, it is the total photon spin that is conserved. A variant of EPR’s argument was given by Bohm and Aharonov (1957), formulated in terms of discrete states. He considered a pair of spatially separated spin-1/2 particles produced somehow in a singlet state, for example, by dissociation of the spin-0 system... Suppose that one measures the spin of particle 1 along the x axis. The outcome is not predetermined by the description [wave function] Ψ12. But from it, one can predict that if particle 1 is found to have its spin parallel to the x axis, then particle 2 will be found to have its spin antiparallel to the x axis if the x component of its spin is also measured. Thus, an experimenter can arrange the apparatus in such a way that he can predict the value of the x component of spin of particle 2 presumably without interacting with it (if there is no action-at-a-distance).Clauser and Shimony are wrong to conclude that measuring one spin component would render spin components in all directions definite. If all three x, y, z components of spin had definite values of 1/2, the resultant vector (the diagonal of a cube with side 1/2) would be 3½/2. This is impossible. Spin is always quantized at ℏ/2. The unmeasured components are in a linear combination of + ℏ/2 and - ℏ/2 (with average value zero!). Although Bell's Theorem is one of the foundational documents in the "Foundations of Quantum Mechanics," it is cited much more often than the confirming experiments are explained, because they are quite complicated. The most famous explanations are given in terms of analogies, with flashing lights, dice throws, or card games. See David Mermin. What is needed is an explanation describing exactly what happens to the quantum particles and their statistics. All recent experiments are compared not to Bell's original inequality but to the CHSH inequality, the work of John Clauser, Michael Horne, Abner Shimony, and Richard Holt.
Experimental Results
With the exception of some of Holt's early results that were found to be erroneous, no evidence has so far been found of any failure of standard quantum mechanics. And as experimental accuracy has improved by orders of magnitude, quantum physics has correspondingly been confirmed to one part in 1018, and the speed of the any information transfer between particles has a lower limit of 106 times the speed of light. There has been no evidence for local "hidden variables."
Bell Theorem tests usually add what Bell called "filters," polarization analyzers whose polarization angles can be set, sometimes at high speeds between the so-called "first" and "second" measurements.
On David Bohm's "Impossible" Pilot Wave
John Bell reflected on Bohm's Pilot Wave in 1987...
Why is the pilot wave picture ignored in textbooks? Should it not be taught, not as the only way, but as an antidote to the prevailing complacency? To show that vagueness, subjectivity, and indeterminism are not forced on us by experimental facts, but by deliberate theoretical choice? Bohm’s 1952 papers on quantum mechanics were for me a revelation. The elimination of indeterminism was very striking. But more important, it seemed to me, was the elimination of any need for a vague division of the world into “system” on the one hand, and “apparatus” or “observer” on the other. I have always felt since that people who have not grasped the ideas of those papers ... and unfortunately they remain the majority ... are handicapped in any discussion of the meaning of quantum mechanics. A preliminary account of these notions was entitled “Quantum field theory without observers, or observables, or measurements, or systems, or apparatus, or wavefunction collapse, or anything like that”. This could suggest to some that the issue in question is a philosophical one. But I insist that my concern is strictly professional. I think that conventional formulations of quantum theory, and of quantum field theory in particular, are unprofessionally vague and ambiguous. Professional theoretical physicists ought to be able to do better. Bohm has shown us a way.
Superdeterminism
During a mid-1980's interview by BBC Radio 3 organized by P. C. W. Davies and J. R. Brown, Bell proposed the idea of a "superdeterminism" that could explain the correlation of results in two-particle experiments without the need for faster-than-light signaling. The two experiments need only have been pre-determined by causes reaching both experiments from an earlier time.
I was going to ask whether it is still possible to maintain, in the light of experimental experience, the idea of a deterministic universe? You know, one of the ways of understanding this business is to say that the world is super-deterministic. That not only is inanimate nature deterministic, but we, the experimenters who imagine we can choose to do one experiment rather than another, are also determined. If so, the difficulty which this experimental result creates disappears. Free will is an illusion - that gets us out of the crisis, does it? That's correct. In the analysis it is assumed that free will is genuine, and as a result of that one finds that the intervention of the experimenter at one point has to have consequences at a remote point, in a way that influences restricted by the finite velocity of light would not permit. If the experimenter is not free to make this intervention, if that also is determined in advance, the difficulty disappears.Bell's superdeterminism would deny the important "free choice" of the experimenter (originally suggested by Niels Bohr and Werner Heisenberg) and later explored by John Conway and Simon Kochen. Conway and Kochen claim that the experimenters' free choice requires that atoms must have free will, something they call their Free Will Theorem. Following John Bell's idea, Nicholas Gisin and Antoine Suarez argue that something might be coming from "outside space and time" to correlate results in their own experimental tests of Bell's Theorem. Roger Penrose and Stuart Hameroff have proposed causes coming "backward in time" to achieve the perfect EPR correlations, as has philosopher Huw Price.
A Preferred Frame?
A little later in the same BBC interview, Bell suggested that a preferred frame of reference might help to explain nonlocality and entanglement.
[Davies] Bell's inequality is, as I understand it, rooted in two assumptions: the first is what we might call objective reality - the reality of the external world, independent of our observations; the second is locality, or non-separability, or no faster-than-light signalling. Now, Aspect's experiment appears to indicate that one of these two has to go. Which of the two would you like to hang on to? [Bell] Well, you see, I don't really know. For me it's not something where I have a solution to sell! For me it's a dilemma. I think it's a deep dilemma, and the resolution of it will not be trivial; it will require a substantial change in the way we look at things. But I would say that the cheapest resolution is something like going back to relativity as it was before Einstein, when people like Lorentz and Poincare thought that there was an aether - a preferred frame of reference - but that our measuring instruments were distorted by motion in such a way that we could not detect motion through the aether. Now, in that way you can imagine that there is a preferred frame of reference, and in this preferred frame of reference things do go faster than light. But then in other frames of reference when they seem to go not only faster than light but backwards in time, that is an optical illusion.The standard explanation of entangled particles usually begins with an observer A, often called Alice, and a distant observer B, known as Bob. Between them is a source of two entangled particles. The two-particle wave function describing the indistinguishable particles cannot be separated into a product of two single-particle wave functions. The problem of faster-than-light signaling arises when Alice is said to measure particle A and then puzzle over how Bob's (later) measurements of particle B can be perfectly correlated, when there is not enough time for any "influence" to travel from A to B. Now as John Bell knew very well, there are frames of reference moving with respect to the laboratory frame of the two observers in which the time order of the events can be reversed. In some moving frames Alice measures first, but in others Bob measures first. Back in the 1960's, C. W. Rietdijk and Hilary Putnam argued that physical determinism could be proved to be true by considering the experiments and observers A and B in a "spacelike" separation and moving at high speed with respect to one another. Roger Penrose developed a similar argument in his book The Emperor's New Mind. It is called the Andromeda Paradox. If there is a preferred frame of reference, surely it is the one in which the origin of the two entangled particles is at rest. Assuming that Alice and Bob are also at rest in this frame and equidistant from the origin, we arrive at the simple picture in which any measurement that causes the two-particle wave function to collapse makes both particles appear simultaneously at determinate places (just what is needed to conserve energy, momentum, angular momentum, and spin). Because a "preferred frame" has an important use in special relativity, where all inertial frames are equivalent, we might call this frame a "special frame."
How Mysterious Is Entanglement?
Some commentators say that nonlocality and entanglement are a "second revolution" in quantum mechanics, "the greatest mystery in physics," or "science's strangest phenomenon," and that quantum physics has been "reborn." They usually quote Erwin Schrödinger as saying
"I consider [entanglement] not as one, but as the characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought."Schrödinger knew that his two-particle wave function Ψ12 could not have the same simple interpretation as the single particle, which can be visualized in ordinary 3-dimensional configuration space. And he is right that entanglement apparently exhibits a richer form of the apparent "action-at-a-distance" and nonlocality that Einstein had already identified in the collapse of the single particle wave function. But the main difference is that two particles acquire new properties instead of one, and they appear to do it instantaneously (at faster than light speeds), just as in the case of a single-particle measurement, the probability of finding that particular single particle anywhere else is instantaneously zero. Nonlocality and entanglement are thus just another manifestation of Richard Feynman's "only" mystery. In both single-particle and two-particle cases paradoxes appear only when we attempt to describe individual particles following specific paths to measurement by observer A (and/or observer B). We cannot know the specific paths at every instant without measurements. But Einstein has told us that at every instant the particles are conserving momentum, despite our lack of knowledge between individual experiments. We can ask what happens if Bob is not at the same distance from the origin as Alice, but farther away. When Alice detects the particle (with say spin up), at that instant the other particle also becomes determinate (with spin down) at the same distance on the other side of the origin. It now continues, in that determinate state, to Bob's measuring apparatus. If measurement of the component σ1 • a, where a is some unit vector, yields the value + 1 then, according to quantum mechanics, measurement of σ2 • a must yield the value — 1 and vice versa... Since we can predict in advance the result of measuring any chosen component of σ2, by previously measuring the same component of σ1, it follows that the result of any such measurement must actually be predetermined.Since the collapse of the two-particle wave function is indeterminate, nothing is pre-determined, although σ2 is indeed determined to have opposite sign (to conserve spin momentum) once σ1 is measured. Here Bell is describing the "following" measurement to be in the same direction as the "previous" measurement. In Bell's description, Bob is measuring "the same component" as Alice, meaning that he measures at the same angle as Alice. If Bob should measure in a different spin direction from Alice (a different spin component), his measurements will lose their perfect correlation, slowly at first for a small angle. As the angle between their measurements increases, the correlation falls off as the cosine of the angle. Oddly, Bell's inequality for local hidden variables predicts a linear falloff with angle. We shall try to understand how Bell came up with a linear angle dependence for what he called his ad hoc model and later his "inequality." Supporters of the Copenhagen Interpretation claim that the properties of particles (like angular or linear momentum) do not exist until they are measured. It was Pascual Jordan who claimed the measurement creates the value of a property. This is true when the preparation of the state is in an unknown linear combination (superposition) of quantum states. In our case, the entangled particles have been prepared in a superposition of states, but both of them have total spin zero.
ψ12 = (1/√2) [ ψ+ (1) ψ- (2) - ψ- (1) ψ+ (2) ]
So whichever of these two states is created by the preparation, it will put the two particles in opposite spin states, randomly + - or - + , but still supporting Bell's view, that they will be perfectly (anti-)correlated when measured at exactly the same angle (measuring the same spin component).
Wolfgang Pauli called it a "measurement of the first kind" when a system is prepared in a state and if measured again, will be certainly found in the same state. (This is the basis for the quantum zeno effect.)
Since our two electrons have been prepared with one spin up and the other down, what could possibly cause them to change, for example, to both spins in the same direction, or as Copenhagen claims, simply to have both spins no longer definite until the next measurement?
As long as nothing interferes with either entangled particle as they travel to the distant detectors, they will be found to be still perfectly correlated, if (and only if) they are measured at the same angle. Otherwise, the correlations should fall off as the cosine (or perhaps the square of the cosine?) of the angle difference.
We can illustrate the straight-line predictions of Bell's inequalities for local hidden variables, the cosine curves predicted by quantum mechanics and conservation of angular momentum, and the odd "kinks" at angles 0°, 90°, 180°, and 270°, with what is called a "Popescu-Rorhlich box."This inscribed square is called the Bell polytope. It shows Bell’s local hidden variables prediction as four straight lines of the inner square. The circular region of quantum mechanics correlations are found outside Bell's straight lines, "violating" his inequalities. Quantum mechanics and Bell's inequalities meet at the corners, where Bell's predictions show a distinctly non-physical right-angle that Bell called a "kink." All experimental results have been found to lie along the curved quantum predictions called the "Tsirelson bound." In 1976, Bell gave us this diagram of the "kinks" in his local hidden variables inequality. He says, Unlike the quantum correlation, which is stationary in θ at θ = 0, at the hidden variable correlation must have a kink thereBell provides us no physical insight into the "kinky" square shape of his "local hidden variables" inequality. In his famous 1981 article on "Bertlmann's Socks," Bell explains that the predictions for his "ad hoc" model are linear in the angle difference |a - b|, and he notes the fact that his inequality only agrees with the quantum predictions at the corners of the square of linear predictions above, and not at intermediate angles. To account then for the Einstein-Podolsky-Rosen-Bohm correlations we have only to assume that the two particles emitted by the source have oppositely directed magnetic axes. Then if the magnetic axis of one particle is more nearly along (than against) one Stern-Gerlach field, the magnetic axes of the other particle will be more nearly against (than along) a parallel Stern- Gerlach field. So when one particle is deflected up, the other is deflected down, and vice versa. There is nothing whatever problematic or mind-boggling about these correlations, with parallel Stern-Gerlach analyzers, from the Einsteinian point of view. So far so good. But now go a little further than before, and consider non-parallel Stern-Gerlach magnets. Let the first be rotated away from some standard position, about the particle line of flight, by an angle a. Let the second be rotated likewise by an angle b. Then if the magnetic axis of either particle separately is randomly oriented, but if the axes of the particles of a given pair are always oppositely oriented, a short calculation gives for the probabilities of the various possible results, in the ad hoc model,... P(up, down) = P(down, up) = 1/2 - |a-b|/2π where ‘up’ and ‘down’ are defined with respect to the magnetic fields of the two magnets. However, a quantum mechanical calculation gives P(up, down) = P(down, up) = 1/2 - 1/2(sin(a - b)/2)2 [= 1/2(cos(a - b)/2)2] Thus the ad hoc model does what is required of it (i.e., reproduces quantum mechanical results) only at (a — b) = 0, (a - b) = π/2 and (a — b) = π, but not at intermediate angles.What was Bell's "short calculation" that gives "the probabilities of possible results" in his ad hoc model as linearly proportional to the angle |a-b|?? And what exactly was Bell's "quantum mechanical calculation" that gives us probabilities proportional to the cosine of the angle |a-b| squared? Perhaps he just used the well-known "law of Malus?" Bell does not give us any underlying physical reasons for the linear dependence on angle. He clearly knows that his linear "inequality" is a strong challenge to the curved cosine prediction of quantum mechanics. And Bell's odd prediction of sharp corners or "kinks" where his straight lines turn ninety degrees (it is only at these corners where his linear inequality agrees with the curving quantum mechanics), surely should have prompted Bell to give us a deeper explanation of his theorem? A few years after Bertlmann's Socks, Bell described today's standard version of his inequality that is based on a limiting condition on values of experimental outcomes. It's known as the CHSH inequality (for John Clauser, Michael Horne, Abner Shimony, and Richard Holt). Bell wrote A theory can be said to be locally causal if the probabilities attached to values of local beables in a spacetime region 1 are unaltered by specification of values of local beables in a space-like separated region 2, when what happens in the backward light cone of 1 is already sufficiently specified, for example by a full specification of local beables in a space-time region 3 (Fig. 4). Fig. 4. Full specification of what happens in 3 makes events in 2 irrelevant for predictions about 1 in a locally causal theory. It is important that region 3 completely shields off from 1 the overlap of the backward light cones of 1 and 2. And it is important that events in 3 be specified completely. Otherwise the traces in region 2 of causes of events in 1 could well supplement whatever else was being used for calculating probabilities about 1. The hypothesis is that any such information about 2 becomes redundant when 3 is specified completely.But it is not clear how Bell's "shield" in region 3 could prevent common causes coming from the initial entanglement. Bell does not say where a common cause could be located, but he does hint at it with the region below the letters c c in this later diagram describing the CHSH inequality. This region is in the overlap of the backward light cones of 1 and 2. See Travis Norsen's placement of the common cause in the shared backward light cone. Fig. 6. Diagram for CHHS inequality derivation.We can add Travis Norsen's placement of the common cause in the shared backward light cone. It clearly shows our three steps explaining entanglement: the initial entanglement at the common causal center ("flash"), the traveling of the particles and the spherically symmetric two-particle wave function Ψ12 ("grey dashed lines") to the separated measurement devices 1/A and 2/B, and finally the measurement devices, each with two possible outputs, each producing a single bit of information, each bit randomly up (1) or down (0), but jointly always perfectly correlated to conserve total spin zero. Fig. 8.5. Space-time diagram for the Bell experiment. The particle pair is emitted at the "flash" at the bottom of the diagram: world lines for the two individual particles flying apart in opposite directions are represented by the grey dashed lines...The apparatus settings n1 and n2 are shown as "inputs" to the measurements occuring in regions 1 and 2, whereas the individual outcomes A and B are shown as "outputs." For Teachers
For Scholars
|