Philosophers
Mortimer Adler Rogers Albritton Alexander of Aphrodisias Samuel Alexander William Alston Anaximander G.E.M.Anscombe Anselm Louise Antony Thomas Aquinas Aristotle David Armstrong Harald Atmanspacher Robert Audi Augustine J.L.Austin A.J.Ayer Alexander Bain Mark Balaguer Jeffrey Barrett William Barrett William Belsham Henri Bergson George Berkeley Isaiah Berlin Richard J. Bernstein Bernard Berofsky Robert Bishop Max Black Susanne Bobzien Emil du Bois-Reymond Hilary Bok Laurence BonJour George Boole Émile Boutroux Daniel Boyd F.H.Bradley C.D.Broad Michael Burke Jeremy Butterfield Lawrence Cahoone C.A.Campbell Joseph Keim Campbell Rudolf Carnap Carneades Nancy Cartwright Gregg Caruso Ernst Cassirer David Chalmers Roderick Chisholm Chrysippus Cicero Tom Clark Randolph Clarke Samuel Clarke Anthony Collins Antonella Corradini Diodorus Cronus Jonathan Dancy Donald Davidson Mario De Caro Democritus Daniel Dennett Jacques Derrida René Descartes Richard Double Fred Dretske John Dupré John Earman Laura Waddell Ekstrom Epictetus Epicurus Austin Farrer Herbert Feigl Arthur Fine John Martin Fischer Frederic Fitch Owen Flanagan Luciano Floridi Philippa Foot Alfred Fouilleé Harry Frankfurt Richard L. Franklin Bas van Fraassen Michael Frede Gottlob Frege Peter Geach Edmund Gettier Carl Ginet Alvin Goldman Gorgias Nicholas St. John Green H.Paul Grice Ian Hacking Ishtiyaque Haji Stuart Hampshire W.F.R.Hardie Sam Harris William Hasker R.M.Hare Georg W.F. Hegel Martin Heidegger Heraclitus R.E.Hobart Thomas Hobbes David Hodgson Shadsworth Hodgson Baron d'Holbach Ted Honderich Pamela Huby David Hume Ferenc Huoranszki Frank Jackson William James Lord Kames Robert Kane Immanuel Kant Tomis Kapitan Walter Kaufmann Jaegwon Kim William King Hilary Kornblith Christine Korsgaard Saul Kripke Thomas Kuhn Andrea Lavazza Christoph Lehner Keith Lehrer Gottfried Leibniz Jules Lequyer Leucippus Michael Levin Joseph Levine George Henry Lewes C.I.Lewis David Lewis Peter Lipton C. Lloyd Morgan John Locke Michael Lockwood Arthur O. Lovejoy E. Jonathan Lowe John R. Lucas Lucretius Alasdair MacIntyre Ruth Barcan Marcus Tim Maudlin James Martineau Nicholas Maxwell Storrs McCall Hugh McCann Colin McGinn Michael McKenna Brian McLaughlin John McTaggart Paul E. Meehl Uwe Meixner Alfred Mele Trenton Merricks John Stuart Mill Dickinson Miller G.E.Moore Thomas Nagel Otto Neurath Friedrich Nietzsche John Norton P.H.Nowell-Smith Robert Nozick William of Ockham Timothy O'Connor Parmenides David F. Pears Charles Sanders Peirce Derk Pereboom Steven Pinker U.T.Place Plato Karl Popper Porphyry Huw Price H.A.Prichard Protagoras Hilary Putnam Willard van Orman Quine Frank Ramsey Ayn Rand Michael Rea Thomas Reid Charles Renouvier Nicholas Rescher C.W.Rietdijk Richard Rorty Josiah Royce Bertrand Russell Paul Russell Gilbert Ryle Jean-Paul Sartre Kenneth Sayre T.M.Scanlon Moritz Schlick John Duns Scotus Arthur Schopenhauer John Searle Wilfrid Sellars David Shiang Alan Sidelle Ted Sider Henry Sidgwick Walter Sinnott-Armstrong Peter Slezak J.J.C.Smart Saul Smilansky Michael Smith Baruch Spinoza L. Susan Stebbing Isabelle Stengers George F. Stout Galen Strawson Peter Strawson Eleonore Stump Francisco Suárez Richard Taylor Kevin Timpe Mark Twain Peter Unger Peter van Inwagen Manuel Vargas John Venn Kadri Vihvelin Voltaire G.H. von Wright David Foster Wallace R. Jay Wallace W.G.Ward Ted Warfield Roy Weatherford C.F. von Weizsäcker William Whewell Alfred North Whitehead David Widerker David Wiggins Bernard Williams Timothy Williamson Ludwig Wittgenstein Susan Wolf Scientists David Albert Michael Arbib Walter Baade Bernard Baars Jeffrey Bada Leslie Ballentine Marcello Barbieri Gregory Bateson Horace Barlow John S. Bell Mara Beller Charles Bennett Ludwig von Bertalanffy Susan Blackmore Margaret Boden David Bohm Niels Bohr Ludwig Boltzmann Emile Borel Max Born Satyendra Nath Bose Walther Bothe Jean Bricmont Hans Briegel Leon Brillouin Stephen Brush Henry Thomas Buckle S. H. Burbury Melvin Calvin Donald Campbell Sadi Carnot Anthony Cashmore Eric Chaisson Gregory Chaitin Jean-Pierre Changeux Rudolf Clausius Arthur Holly Compton John Conway Jerry Coyne John Cramer Francis Crick E. P. Culverwell Antonio Damasio Olivier Darrigol Charles Darwin Richard Dawkins Terrence Deacon Lüder Deecke Richard Dedekind Louis de Broglie Stanislas Dehaene Max Delbrück Abraham de Moivre Bernard d'Espagnat Paul Dirac Hans Driesch John Eccles Arthur Stanley Eddington Gerald Edelman Paul Ehrenfest Manfred Eigen Albert Einstein George F. R. Ellis Hugh Everett, III Franz Exner Richard Feynman R. A. Fisher David Foster Joseph Fourier Philipp Frank Steven Frautschi Edward Fredkin Augustin-Jean Fresnel Benjamin Gal-Or Howard Gardner Lila Gatlin Michael Gazzaniga Nicholas Georgescu-Roegen GianCarlo Ghirardi J. Willard Gibbs James J. Gibson Nicolas Gisin Paul Glimcher Thomas Gold A. O. Gomes Brian Goodwin Joshua Greene Dirk ter Haar Jacques Hadamard Mark Hadley Patrick Haggard J. B. S. Haldane Stuart Hameroff Augustin Hamon Sam Harris Ralph Hartley Hyman Hartman Jeff Hawkins John-Dylan Haynes Donald Hebb Martin Heisenberg Werner Heisenberg John Herschel Basil Hiley Art Hobson Jesper Hoffmeyer Don Howard John H. Jackson William Stanley Jevons Roman Jakobson E. T. Jaynes Pascual Jordan Eric Kandel Ruth E. Kastner Stuart Kauffman Martin J. Klein William R. Klemm Christof Koch Simon Kochen Hans Kornhuber Stephen Kosslyn Daniel Koshland Ladislav Kovàč Leopold Kronecker Rolf Landauer Alfred Landé Pierre-Simon Laplace Karl Lashley David Layzer Joseph LeDoux Gerald Lettvin Gilbert Lewis Benjamin Libet David Lindley Seth Lloyd Werner Loewenstein Hendrik Lorentz Josef Loschmidt Alfred Lotka Ernst Mach Donald MacKay Henry Margenau Owen Maroney David Marr Humberto Maturana James Clerk Maxwell Ernst Mayr John McCarthy Warren McCulloch N. David Mermin George Miller Stanley Miller Ulrich Mohrhoff Jacques Monod Vernon Mountcastle Emmy Noether Donald Norman Travis Norsen Alexander Oparin Abraham Pais Howard Pattee Wolfgang Pauli Massimo Pauri Wilder Penfield Roger Penrose Steven Pinker Colin Pittendrigh Walter Pitts Max Planck Susan Pockett Henri Poincaré Daniel Pollen Ilya Prigogine Hans Primas Zenon Pylyshyn Henry Quastler Adolphe Quételet Pasco Rakic Nicolas Rashevsky Lord Rayleigh Frederick Reif Jürgen Renn Giacomo Rizzolati A.A. Roback Emil Roduner Juan Roederer Jerome Rothstein David Ruelle David Rumelhart Robert Sapolsky Tilman Sauer Ferdinand de Saussure Jürgen Schmidhuber Erwin Schrödinger Aaron Schurger Sebastian Seung Thomas Sebeok Franco Selleri Claude Shannon Charles Sherrington Abner Shimony Herbert Simon Dean Keith Simonton Edmund Sinnott B. F. Skinner Lee Smolin Ray Solomonoff Roger Sperry John Stachel Henry Stapp Tom Stonier Antoine Suarez Leo Szilard Max Tegmark Teilhard de Chardin Libb Thims William Thomson (Kelvin) Richard Tolman Giulio Tononi Peter Tse Alan Turing C. S. Unnikrishnan Francisco Varela Vlatko Vedral Vladimir Vernadsky Mikhail Volkenstein Heinz von Foerster Richard von Mises John von Neumann Jakob von Uexküll C. H. Waddington John B. Watson Daniel Wegner Steven Weinberg Paul A. Weiss Herman Weyl John Wheeler Jeffrey Wicken Wilhelm Wien Norbert Wiener Eugene Wigner E. O. Wilson Günther Witzany Stephen Wolfram H. Dieter Zeh Semir Zeki Ernst Zermelo Wojciech Zurek Konrad Zuse Fritz Zwicky Presentations Biosemiotics Free Will Mental Causation James Symposium |
Hilary Putnam
In 1967 Hilary Putnam claimed to prove that the universe is deterministic (indeed pre-determined) using an argument from special relativity. A similar argument had been published a year earlier by C. W. Rietdijk. And many years later, in his 1989 book The Emperor's New Mind, Roger Penrose developed this idea as what is called the "Andromeda Paradox." Even more recently, Michael Lockwood and Michael Levin have defended similar views.
Putnam, famous for his various theories about "realism," claims that future events are already "real." This is a "tenseless" view of the future, like that of J. J. C. Smart's block universe of special relativity.
Putnam discusses the related problems of the truth of "future contingents" and Aristotle's famous "sea-battle." Also see Diodorus Cronus's Master Argument.
Putnam's argument depends on paradoxes (the most famous being the twin paradox) that are the results of moving observers having different ideas about what events in their view correspond to "now." They have different "planes of simultaneity." "Now" means they have synchronized their clocks according to Einstein's famous procedure.
A moving observer B thinks some event in his plane of simultaneous events is in B's future. At the same (cosmic time) moment, an observer A thinks that B is in his (A's) plane of simultaneity.
But this is not a transitive relation. Just because A sees B as his "now" and B sees an event in A's future as B's "now" does not make the event in A's future "now" for A.
Putnam says
(1) All (and only) things that exist now are real. Future things (which do not already exist) are not real (on this view); although, of course they will be real when the appropriate time has come to be the present time. Similarly, past things (which have ceased to exist) are not real, although they were real in the past. If we assume classical physics and take the relation R to be the relation of simultaneity, then, on the view (1), it is true that all and only the things that stand in the relation R to me-now are real. We now discover something really remarkable. Namely, on every natural choice of the relation R, it turns out that future things (or events) are already real!"To accomplish this sophistical argument, Putnam has to assume observers moving relative to one another faster than the speed of light. He says you-now and I-now are at the same place now, but moving with relative velocities which are very large (relative to the speed of light, which I take to be = 1). Thus, our world-lines look as shown in figure 1 (I have also drawn our "lightcone" for the purpose of the later discussion): It is well known that, as a consequence of Special Relativity, there are events which lie in "the future" according to my coordinate system and which lie in the "present" of you-now according to your coordinate system. Since these things stand in the relation R to you-now, and you-now are real, and it was assumed that all and only the things that stand in the relation R to me-now are real, the principle III requires that I call these future things and events real! (But, actually, I now have a contradiction: for these future things do not stand in the relation R to me-now, and so my assumption that all and only the things that stand in this relation R to me-now are real was already inconsistent with the principle that There Are No Privileged Observers.) The difficulty is obvious: what the principle that There Are No Privileged Observers requires is simply that the relation R be transitive; i.e., that it have the property that from xRy and yRz it follow that xRz. Simultaneity-in-my-coordinate-system has this property, since if x is simultaneous with y in my coordinate system, and y is simultaneous with z in my coordinate system, then x is also simultaneous with z in my coordinate system; but simultaneity-in-my-coordinate system is not admissible as a choice of R, because it depends on the coordinate system. And the relation "x is simultaneous with y in the coordinate system of x" (which is essentially the relation we just considered), while admissible, is not transitive, since, if I-now am simultaneous with you-now in the coordinate system of me-now, and you-now are simultaneous with event X in the coordinate system of you-now, it does not follow that I-now am simultaneous with event X in the coordinate system of me-now. Now then, if we combine the fact that the relation R is required by iii to be transitive with our desire to preserve the following principle, which is one-half of (1): (2) All things that exist now are real. -then we quickly see that future things must be real. For, if the relation R satisfies (2)-and I take (2) to mean (at least when I assert it) that all things that exist now according to my coordinate system are real-and you-now are as in figure 1, then you-now must stand in the relation R to me-now, since you exist both now and here. But, if the relation R always holds between all the events that are on some one "simultaneity line" in my coordinate system and meat- the-appropriate-time, then (since the laws of nature are invariant under Lorentz transformation, by the principle of Special Relativity), the relation R must also hold between all the events on some one "simultaneity-line" in any observer's coordinate system and that-observer- at-the-appropriate-time. Hence, all the events that are simultaneous with you-now in your coordinate system must also bear the relation R to you-now. Let event X be one such event which is "in the future" according to my coordinate system (if our velocities are as shown in figure 1, then such an event X must always exist). Then, since the event X bears the relation R to you-now, and you-now bear the relation R to me-now, the event X bears the relation R to me-now. But we chose R to be such that all and only those events which bear R to me-now are real. So the event X, which is a future event according to my coordinate system, is already real! I conclude that the problem of the reality and the determinateness of future events is now solved. Moreover, it is solved by physics and not by philosophy. We have learned that we live in a four-dimensional and not a three-dimensional world, and that space and time or, better, space-like separations and time-like separations - are just two aspects of a single four-dimensional continuum with a peculiar metric which sometimes permits distance (y, x) = 0 even when x ≠ y. Indeed, I do not believe that there are any longer any philosophical problems about Time; there is only the physical problem of determining the exact physical geometry of the four-dimensional continuum that we inhabit. In this paper I have talked only about the relativistic aspects of the problem of physical time: there is, of course, also the problem of thermodynamics, and whether the Second Law does or does not explain the existence of "irreversible" processes (the so-called "problem of the direction of time"), and the problem of the existence or nonexistence of true irreversibilities in quantum mechanics, which, I gather, is currently under hot discussion. I have not talked about these problems.Although Putnam's principle that There Are No Privileged Observers is correct, there may exist preferred frames of reference that suggest solutions to some important problems, for example, the EPR Paradox. Entanglement is a mysterious quantum phenomenon that seems capable of transmitting information over vast distances faster than the speed of light, a property called non-locality, first seen by Albert Einstein in 1905. Information physics shows that although information about probability (actually, about possibilities) comes into existence simultaneously at space-like separated points, no faster-than-light signaling is possible, since neither matter nor energy is transmitted. The mysterious "collapse" of the wave function is a question about possibilities, probabilities, and actuality. The collapse of the two-particle wave function in the EPR experiment is the same mystery as the one in the two-slit experiment, except that now there are two particles and they appear instantly and simultansously, despite their space-like separation. This can be seen by reformulating the EPR paradox using a preferred frame of reference in which the source of the entangled particles and the observers are at rest. Almost every presentation of the EPR paradox begins with something like "Alice observes one particle..." and concludes with the question "How does the second particle get the information needed so that Bob's measurements correlate perfectly with Alice?" There is a fundamental asymmetry in this framing of the EPR experiment. It is a surprise that Einstein, who was so good at seeing deep symmetries, did not consider how to remove the asymmetry. Consider this reframing: Alice's measurement collapses the two-particle wave function. The two indistinguishable particles simultaneously appear at locations in a space-like separation. The frame of reference in which the source of the two entangled particles and the two experimenters are at rest is a preferred frame in the following sense. As Einstein and Putnam knew very well, there are frames of reference moving with respect to the laboratory frame of the two observers in which the time order of the events can be reversed. In some moving frames Alice measures first, but in others Bob measures first. If there is a preferred frame of reference, surely it is the one in which the origin of the two entangled particles is at rest. Assuming that Alice and Bob are also at rest in this preferred frame and equidistant from the origin, we arrive at the simple picture in which any measurement that causes the two-particle wave function to collapse makes both particles appear simultaneously at determinate places (just what is needed to conserve energy, momentum, angular momentum, and spin). |