Philosophers
Mortimer Adler Rogers Albritton Alexander of Aphrodisias Samuel Alexander William Alston Anaximander G.E.M.Anscombe Anselm Louise Antony Thomas Aquinas Aristotle David Armstrong Harald Atmanspacher Robert Audi Augustine J.L.Austin A.J.Ayer Alexander Bain Mark Balaguer Jeffrey Barrett William Barrett William Belsham Henri Bergson George Berkeley Isaiah Berlin Richard J. Bernstein Bernard Berofsky Robert Bishop Max Black Susanne Bobzien Emil du Bois-Reymond Hilary Bok Laurence BonJour George Boole Émile Boutroux Daniel Boyd F.H.Bradley C.D.Broad Michael Burke Jeremy Butterfield Lawrence Cahoone C.A.Campbell Joseph Keim Campbell Rudolf Carnap Carneades Nancy Cartwright Gregg Caruso Ernst Cassirer David Chalmers Roderick Chisholm Chrysippus Cicero Tom Clark Randolph Clarke Samuel Clarke Anthony Collins Antonella Corradini Diodorus Cronus Jonathan Dancy Donald Davidson Mario De Caro Democritus Daniel Dennett Jacques Derrida René Descartes Richard Double Fred Dretske John Dupré John Earman Laura Waddell Ekstrom Epictetus Epicurus Austin Farrer Herbert Feigl Arthur Fine John Martin Fischer Frederic Fitch Owen Flanagan Luciano Floridi Philippa Foot Alfred Fouilleé Harry Frankfurt Richard L. Franklin Bas van Fraassen Michael Frede Gottlob Frege Peter Geach Edmund Gettier Carl Ginet Alvin Goldman Gorgias Nicholas St. John Green H.Paul Grice Ian Hacking Ishtiyaque Haji Stuart Hampshire W.F.R.Hardie Sam Harris William Hasker R.M.Hare Georg W.F. Hegel Martin Heidegger Heraclitus R.E.Hobart Thomas Hobbes David Hodgson Shadsworth Hodgson Baron d'Holbach Ted Honderich Pamela Huby David Hume Ferenc Huoranszki Frank Jackson William James Lord Kames Robert Kane Immanuel Kant Tomis Kapitan Walter Kaufmann Jaegwon Kim William King Hilary Kornblith Christine Korsgaard Saul Kripke Thomas Kuhn Andrea Lavazza Christoph Lehner Keith Lehrer Gottfried Leibniz Jules Lequyer Leucippus Michael Levin Joseph Levine George Henry Lewes C.I.Lewis David Lewis Peter Lipton C. Lloyd Morgan John Locke Michael Lockwood Arthur O. Lovejoy E. Jonathan Lowe John R. Lucas Lucretius Alasdair MacIntyre Ruth Barcan Marcus Tim Maudlin James Martineau Nicholas Maxwell Storrs McCall Hugh McCann Colin McGinn Michael McKenna Brian McLaughlin John McTaggart Paul E. Meehl Uwe Meixner Alfred Mele Trenton Merricks John Stuart Mill Dickinson Miller G.E.Moore Thomas Nagel Otto Neurath Friedrich Nietzsche John Norton P.H.Nowell-Smith Robert Nozick William of Ockham Timothy O'Connor Parmenides David F. Pears Charles Sanders Peirce Derk Pereboom Steven Pinker U.T.Place Plato Karl Popper Porphyry Huw Price H.A.Prichard Protagoras Hilary Putnam Willard van Orman Quine Frank Ramsey Ayn Rand Michael Rea Thomas Reid Charles Renouvier Nicholas Rescher C.W.Rietdijk Richard Rorty Josiah Royce Bertrand Russell Paul Russell Gilbert Ryle Jean-Paul Sartre Kenneth Sayre T.M.Scanlon Moritz Schlick John Duns Scotus Arthur Schopenhauer John Searle Wilfrid Sellars David Shiang Alan Sidelle Ted Sider Henry Sidgwick Walter Sinnott-Armstrong Peter Slezak J.J.C.Smart Saul Smilansky Michael Smith Baruch Spinoza L. Susan Stebbing Isabelle Stengers George F. Stout Galen Strawson Peter Strawson Eleonore Stump Francisco Suárez Richard Taylor Kevin Timpe Mark Twain Peter Unger Peter van Inwagen Manuel Vargas John Venn Kadri Vihvelin Voltaire G.H. von Wright David Foster Wallace R. Jay Wallace W.G.Ward Ted Warfield Roy Weatherford C.F. von Weizsäcker William Whewell Alfred North Whitehead David Widerker David Wiggins Bernard Williams Timothy Williamson Ludwig Wittgenstein Susan Wolf Scientists David Albert Michael Arbib Walter Baade Bernard Baars Jeffrey Bada Leslie Ballentine Marcello Barbieri Gregory Bateson Horace Barlow John S. Bell Mara Beller Charles Bennett Ludwig von Bertalanffy Susan Blackmore Margaret Boden David Bohm Niels Bohr Ludwig Boltzmann Emile Borel Max Born Satyendra Nath Bose Walther Bothe Jean Bricmont Hans Briegel Leon Brillouin Stephen Brush Henry Thomas Buckle S. H. Burbury Melvin Calvin Donald Campbell Sadi Carnot Anthony Cashmore Eric Chaisson Gregory Chaitin Jean-Pierre Changeux Rudolf Clausius Arthur Holly Compton John Conway Jerry Coyne John Cramer Francis Crick E. P. Culverwell Antonio Damasio Olivier Darrigol Charles Darwin Richard Dawkins Terrence Deacon Lüder Deecke Richard Dedekind Louis de Broglie Stanislas Dehaene Max Delbrück Abraham de Moivre Bernard d'Espagnat Paul Dirac Hans Driesch John Eccles Arthur Stanley Eddington Gerald Edelman Paul Ehrenfest Manfred Eigen Albert Einstein George F. R. Ellis Hugh Everett, III Franz Exner Richard Feynman R. A. Fisher David Foster Joseph Fourier Philipp Frank Steven Frautschi Edward Fredkin Augustin-Jean Fresnel Benjamin Gal-Or Howard Gardner Lila Gatlin Michael Gazzaniga Nicholas Georgescu-Roegen GianCarlo Ghirardi J. Willard Gibbs James J. Gibson Nicolas Gisin Paul Glimcher Thomas Gold A. O. Gomes Brian Goodwin Joshua Greene Dirk ter Haar Jacques Hadamard Mark Hadley Patrick Haggard J. B. S. Haldane Stuart Hameroff Augustin Hamon Sam Harris Ralph Hartley Hyman Hartman Jeff Hawkins John-Dylan Haynes Donald Hebb Martin Heisenberg Werner Heisenberg John Herschel Basil Hiley Art Hobson Jesper Hoffmeyer Don Howard John H. Jackson William Stanley Jevons Roman Jakobson E. T. Jaynes Pascual Jordan Eric Kandel Ruth E. Kastner Stuart Kauffman Martin J. Klein William R. Klemm Christof Koch Simon Kochen Hans Kornhuber Stephen Kosslyn Daniel Koshland Ladislav Kovàč Leopold Kronecker Rolf Landauer Alfred Landé Pierre-Simon Laplace Karl Lashley David Layzer Joseph LeDoux Gerald Lettvin Gilbert Lewis Benjamin Libet David Lindley Seth Lloyd Werner Loewenstein Hendrik Lorentz Josef Loschmidt Alfred Lotka Ernst Mach Donald MacKay Henry Margenau Owen Maroney David Marr Humberto Maturana James Clerk Maxwell Ernst Mayr John McCarthy Warren McCulloch N. David Mermin George Miller Stanley Miller Ulrich Mohrhoff Jacques Monod Vernon Mountcastle Emmy Noether Donald Norman Travis Norsen Alexander Oparin Abraham Pais Howard Pattee Wolfgang Pauli Massimo Pauri Wilder Penfield Roger Penrose Steven Pinker Colin Pittendrigh Walter Pitts Max Planck Susan Pockett Henri Poincaré Daniel Pollen Ilya Prigogine Hans Primas Zenon Pylyshyn Henry Quastler Adolphe Quételet Pasco Rakic Nicolas Rashevsky Lord Rayleigh Frederick Reif Jürgen Renn Giacomo Rizzolati A.A. Roback Emil Roduner Juan Roederer Jerome Rothstein David Ruelle David Rumelhart Robert Sapolsky Tilman Sauer Ferdinand de Saussure Jürgen Schmidhuber Erwin Schrödinger Aaron Schurger Sebastian Seung Thomas Sebeok Franco Selleri Claude Shannon Charles Sherrington Abner Shimony Herbert Simon Dean Keith Simonton Edmund Sinnott B. F. Skinner Lee Smolin Ray Solomonoff Roger Sperry John Stachel Henry Stapp Tom Stonier Antoine Suarez Leo Szilard Max Tegmark Teilhard de Chardin Libb Thims William Thomson (Kelvin) Richard Tolman Giulio Tononi Peter Tse Alan Turing C. S. Unnikrishnan Francisco Varela Vlatko Vedral Vladimir Vernadsky Mikhail Volkenstein Heinz von Foerster Richard von Mises John von Neumann Jakob von Uexküll C. H. Waddington John B. Watson Daniel Wegner Steven Weinberg Paul A. Weiss Herman Weyl John Wheeler Jeffrey Wicken Wilhelm Wien Norbert Wiener Eugene Wigner E. O. Wilson Günther Witzany Stephen Wolfram H. Dieter Zeh Semir Zeki Ernst Zermelo Wojciech Zurek Konrad Zuse Fritz Zwicky Presentations Biosemiotics Free Will Mental Causation James Symposium |
Martin J. Klein
Martin J. Klein was the earliest historian of science to recognize the importance of Albert Einstein's contributions to quantum mechanics and how they had been neglected in the years since the development of the "new quantum theory" by Werner Heisenberg, Max Born, Erwin Schrödinger, and others in the late 1920's.
In his first contribution, Klein compared Einstein's quantum physics with his work on relativity,
Einstein's work on relativity has generated millions of words of comment and exposition on all levels of discourse. Comparatively little has been written about his probings, over a period of a quarter of a century, into the theory of radiation and its significance for our understanding of the physical world. And yet the boldness and clarity of Einstein's insight show forth as characteristically in these studies as in his more famous investigations into the nature of space and time.Klein does not yet emphasize that Einstein's work on quantum physics is being ignored or dismissed by the leading physicists of the time, but he does point out how unusual Einstein's insight was into the dualism between continuous field theories and discrete particle theories. This dualism between particle and field was probably noticed by others besides Einstein, but there is no record that anyone else suggested removing it in the drastic way that Einstein then proposed. (I am not even aware that anyone else was disturbed by the dualism at that time, and yet it was already a major theme in Einstein's own work.)Klein turns next to Einstein's 1906 work on specific heats, which was accepted by several physicists as proving the importance of the quantum theory, though not for his "very revolutionary" ideas about the "light quantum." It is cited as solving the problem of anomalous specific heats. Just as Einstein's "light quantum hypothesis" was mostly ignored until the mid-1920's, even as the 1905 paper is always cited for its explanation of the "photoelectric effect," Klein tells us that Einstein was using specific heat as an application of a much deeper insight into quantum theory. Einstein saw energy levels or "states," with transitions between them that he called "jumps," absorbing or emitting a quantum of energy hν, long before the 1913 Bohr atom. Klein begins by quoting Einstein we must now assume that, for ions which can vibrate at a definite frequency and which make possible the exchange of energy between radiation and matter, the manifold of possible states must be narrower than it is for the bodies in our direct experience. We must in fact assume that the mechanism of energy transfer is such that the energy can assume only the values 0, hv, 2hv, ....nhvEinstein saw that these possible "states" occupy a narrow energy range. Most of the energy levels in the classical continuum would not be accessible. Energy can not be absorbed unless the amount hν exactly matches the energy difference between the ground level and the excited level. This is a clear anticipation of the "stationary states" and quantum jumps of Niels Bohr atomic model six years later. Einstein discovered that not all radiative transitions in matter are possible, that the possible transitions have a narrow band of energies because the available states or levels are narrow. Some "degrees of freedom" in matter are said to be "frozen out" below some temperature. The vibrational oscillations of molecules and vibrations of ions in solid matter require a minimum of energy below which they cannot absorb heat. Once the temperature rises so that average energy E = kT (k is Boltzmann's constant) reaches the energy of the quantum state, energy can be absorbed into that degree of freedom. Klein says Einstein's paper is inadequately described by those who refer to it as the quantum theory of solids. Einstein is concerned with apparent violations of the principle of the equipartition of energy, a foundation of classical physics. It would be more to the point to say that the paper was written to show that there was, or would have to be, a quantum theory, and that the range of phenomena which could be clarified by such a theory included the properties of matter as well as those of radiation. Einstein was showing in a new way how deeply the foundations of classical physics had been undermined.Klein quotes Marcel Brillouin as saying at the first Solvay Conference (in 1911) "It seems certain that from now on we will have to introduce into our physical and chemical ideas a discontinuity, something that changes in jumps, of which we had no notion at all a few years ago"Thus the "quantum jumps" caused by discontinuous radiative transitions between discrete energy levels in matter that we associate with the "Bohr Atom" were well known at least a year before Bohr encountered the Balmer series formula for spectral lines in hydrogen. Bohr is known to have studied the 1911 Solvay conference closely. In his third article on Einstein in the 1960's, Klein showed that Einstein had explained wave-particle duality nearly two decades before Erwin Schrödinger's wave mechanics and Werner Heisenberg's matrix mechanics battled for the best explanation of quantum theory. Klein lamented the great oversimplification of the history of quantum theory that came from focusing on the 1913 work of Niels Bohr. The most common form that the oversimplification takes is an almost exclusive concentration on the problems of atomic structure and atomic spectra from Bohr’s work in 1913 to the new quantum mechanics of 1925-26... The problems were not those of atomic structure but those of the dual nature of radiation and the properties of gases. The methods were not so much those of the “old quantum theory” as those of statistical mechanics. And the presiding genius and principal guide was not Bohr, but Einstein. It is the line of approach that led up to Schrodinger’s wave mechanics.In his last major work on Einstein, part of the Harvard Einstein: A Centenary Volume, in 1979, Klein tried to emphasize Einstein's great contributions to quantum theory, even if he remained a critic. When the new quantum physics was developed, Einstein greeted it sceptically even though he had done as much as anyone to bring it into being. He recognized its great successes, but he never accepted it as the new fundamental theory it claimed to be.After a comprehensive summary of Einstein's work on quantum theory, Klein portrayed Einstein as out of step with almost everyone in the new field of quantum mechanics. [He] never accepted the finality of the quantum mechanical renunciation of causality, or its claim to be the new fundamental theory. From the Solvay Conference of 1927, where the quantum mechanical synthesis had its first major discussion, to the end of his life, Einstein never stopped raising questions about this new approach to physics. At first he tried to propose conceptual experiments that would prove the logical inconsistency of quantum mechanics, but these attempts were all turned aside successfully by Bohr and his collaborators. In 1935 Einstein began to emphasize another basic limitation in quantum mechanics, as he saw it. He argued that its description of physical reality was essentially incomplete, that there were elements of physical reality that had no counterparts in the theory. Bohr’s response to this was to reject Einstein’s criterion of physical reality as ambiguous, and to claim that only through his own principle of complementarity could one arrive at an experimentally meaningful criterion of completeness. Einstein recognized the power of quantum mechanics, calling it ‘the most successful physical theory of our time’, but he would not admit it as the basis for theoretical physics. He refused to give up the idea that there was such a thing as ‘the real state of a physical system, something that objectively exists independently of observation and measurement, and which can, in principle, be described in physical terms’. Einstein was convinced that when a theory giving a complete physical description was developed, the position of quantum mechanics in the framework of this future physics would be analogous to that of statistical mechanics in the framework of classical physics. It would be the theory to use when only incomplete information was available or when only an incomplete description was wanted. Einstein’s colleagues could only regret that he had chosen to follow a path separate from the rest. As Born wrote: ‘Many of us regard this as a tragedy—for him, as he gropes his way in loneliness, and for us, who miss our leader and standard-bearer.’ To Einstein himself the choice was inevitable. He was prepared for the ‘accusation’ brought against him sometimes ‘in the friendliest of fashions’, but sometimes not: he was accused of ‘rigid adherence to classical theory’. But, he wrote, it was not so easy to declare guilt or innocence of this charge ‘because it is by no means immediately clear what is meant by “classical theory” ’. Newtonian mechanics was a classical theory, but it had not been an acceptable claimant as the fundamental theory underlying physics since the introduction of field theory. Field theories were never completed—neither Maxwell’s theory of electromagnetism nor his own theory of gravitation—since they were never extended to include the sources of the field in a non-singular way. Einstein did plead guilty to adherence to the programme of field theory; for it was his hope that a complete field theory would provide the basis for all of physics, giving that complete description he missed in the quantum mechanics he had helped so much to develop. He saw his whole career as striving to create a new unified foundation for physics. That was what he meant when he ended his scientific autobiography by writing that he had tried to show ‘how the efforts of a life hang together and why they have led to expectations of a definite form’..
References
Einstein’s first paper on quanta. The Natural Philosopher, 2(1963), 59-86.
Einstein and the wave-particle duality. The Natural Philosopher, 1964. Bobs-Merrill
Einstein, specific heats, and the early quantum theory. Science, 148(3667), 1965, 173-180.
The First Phase of the Bohr-Einstein Dialogue, in Historical Studies in the Physical Sciences, Vol. 2 (1970), pp. iv, 1-39
Einstein and the development of quantum physics, in Einstein: A Centenary Volume, Harvard University Press, 1979
The First Phase of the Bohr-Einstein Dialogue
Normal | Teacher | Scholar
|