
Introduction 

The following two papers of Planck represent only a very small 
part of the historical development of our knowledge about the 
spectral energy distribution of electromagnetic radiation. They 
are the result of a long series of investigations undertaken not 
only by Planck (in his work on irreversible processes since 
1878, and—stimulated by Maxwell's theory as developed 
especially by H. Hertz—on the application of thermodynamics 
to electromagnetic processes, from about 1891) but also by 
many other scientists who contributed to these experimentally 
and theoretically in the 19th century or earlier. Planck did not 
work in a vacuum. On the theoretical side, his formulations 
were most directly preceded by the theoretical research of 
Wilhelm Wien, who not only introduced the entropy of 
(resonator-free) radiation in 1894, but also in 1893 and 1894 
discovered several regularities governing the form of the 
black-body radiation function introduced in 1860 by Gustav 
Robert Kirchhoff; in 1896 Wien found, simultaneously and 
independently with Friedrich Paschen, what is now called 
Wien's distribution law. But Planck also drew on J. H. 
Poynting's theorem on energy flux, as well as on the law for 
total radiation obtained by Josef Stefan in 1879 from measure­
ments of earlier authors and derived theoretically in 1884 by 
L. Boltzmann. Indeed, Planck may have retained as "youthful 
memories" his intense preoccupation, in his 19th year, with 
John Tyndall's works on heat radiation. 

On the other hand the results, as they become evident in these 
two papers, are only the initial steps in the direction of the 
quantum theory to be developed later. In the years 1900 and 
1901 Planck still had no conception of an essentially new 
hypothesis, later known as the quantum hypothesis. In 1900 
in more than one regard he still relied strictly on Boltzmann's 
statistics of discrete kinetic energies and had no inkling, for 
example, of a "Bose statistics". He saw his radiation function— 
known to contemporaries as the "Wien-Planck" equation—as 
only a suggestion, which needed to be experimentally tested. 
This testing, undertaken in the long-wave region especially by 
Heinrich Rubens, would take two more decades. Such signs of 
incompleteness of the theory itself and of its relation to ex­
periment affect in general, by the way, every physical problem. 

In the history of physics these two papers are considered 
"milestones", since in the 20th century it has turned out that 
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they opened up a new field of physics—one field among others 
that were becoming important around this time (e.g. the nature 
of the electron, X-rays, relativity theory and nuclear radiation). 

Sources of information in which the individual thought-steps 
of Planck toward the radiation equation and its statistical 
foundation can be found are almost non-existent. The collection 
of Planck's manuscripts in Berlin was almost completely 
burned in the second World War. Thus one is limited essentially 
to a careful study of the publications of Planck and his con­
temporaries and predecessors as well as of reports of meetings. 
If one takes proper account also of the writings of the experi­
menters and does not neglect to check numerical values, one 
can construct at least a rough picture of the possibilities, up to 
and around 1900, which physicists had for obtaining knowledge 
and confirming it. This picture comes close to the actual 
events. Later retrospective accounts of Planck and other 
authors do not—it is demonstrable—in general possess this 
validity. 
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6. On an improvement of 
Wien's equation for the spectrum1 

by M. Planck 

(read at the meeting of 19 October 1900) 
(cf. above p. 181)la 

The interesting results of long wave length spectral energy 
measurements which were communicated by Mr. Kurlbaum at 
today's meeting,2 and which were obtained by him and Mr. 
Rubens, confirm the statement by Mr. Lummer and Mr. 
Pringsheim, which was based on their observations that Wien's 
energy distribution law is not as generally valid as many have 
supposed up to now,3 but that this law at most has the character 
of a limiting case,4 the exceedingly simple form of which was 
due only to a restriction to short wave lengths and low tem­
peratures.* Since I myself even in this Society have expressed 
the opinion that Wien's law must be necessarily true,5 I may 
perhaps be permitted to explain briefly the relationship between 
the electromagnetic radiation theory developed by me and the 
experimental data. 

The energy distribution law is according to this theory deter­
mined as soon as the entropy S of a linear6 resonator which 
interacts with the radiation is known as a function of its vibra­
tional energy7 U. I have, however, already in my last paper 
on this subject! stated that the law of increase of entropy is 
by itself not yet sufficient to determine this function com­
pletely;8 my view that Wien's law would be of general validity, 
was brought about rather by special considerations, namely by 
the evaluation of an infinitesimal increase of the entropy of a 
system of n identical resonators in a stationary radiation field 
by two different methods which led to the equation! 

dUH. AU„. /([/„) = « dU . AU ./(£/"), 

3 d2S 

5dU~2 where U„ = n(J and f(U)=---y^. 

* Mr. Paschen has written to me that he also has recently found 
appreciable deviations from Wien's law. 

t M. Planck, Ann. Phys. 1 [ = 306], 730 (1900). 
I l.c.p. 732. 
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From this equation Wien's law follows in the form9 

d2S const 

dU2 U ' 

The expression on the right-hand side of this functional 
equation is certainly the above-mentioned change in entropy 
since n identical processes occur independently, the entropy 
changes of which must simply add up. However, 1 could 
consider the possibility, even if it would not be easily under­
standable and in any case would still be difficult to prove, that 
the expression on the left-hand side would not have the general 
meaning which I attributed to it earlier, in other words: 
that the values of U„, dU„ and AC/,, are not by themselves 
sufficient to determine the change of entropy under considera­
tion, but that V itself must also be known for this.10 Following 
this suggestion I have finally started to construct completely 
arbitrary expressions for the entropy which although they are 
more complicated than Wien's expression still seem to satisfy 
just as completely all requirements of the thermodynamic and 
electromagnetic theory. 

I was especially attracted by one of the expressions thus 
constructed which is nearly as simple as Wien's expression11 

and which would deserve to be investigated since Wien's 
expression is not sufficient to cover all observations. We get 
this expression by putting* 

d2S_ a 12 

d~U~2~U(B+U)' 

It is by far the simplest of all expressions which lead to S 
as a logarithmic function of U—which is suggested from 
probability considerations14—and which moreover for small 
values of U reduces to Wien's expression mentioned above. 
Using the relation 

dS_] 
~d!j~T 

and Wien's "displacement" lawj one gets a radiation formula 
with two constants:15, 16 

* I use the second derivative of S with respect to U since this quantity 
has a simple physical meaning13 (l.c.p. 731). 

t The expression of Wien's displacement law is simply19 S=f(U/v), 
where v is the frequency of the resonator, as I shall show elsewhere. 
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which, as far as I can see at the moment, fits the observational 
data, published up to now, as satisfactorily as the best equations 
put forward for the spectrum, namely those of Thiesen,*17 

Lummer-Jahnke,f and Lummer-Pringsheim.J (This was 
demonstrated by some numerical examples.18) 1 should 
therefore be permitted to draw your attention to this new 
formula which I consider to be the simplest possible, apart 
from Wien's expression, from the point of view of the electro­
magnetic theory of radiation. 

* M. Thiesen, Verh. Deutsch. Phys. Ges. 2, 67 (1900). 
One can see there that Mr. Thiesen had put forward his formula before 

Mr. Lummer and Mr. Pringsheim had extended their measurements to 
longer wave lengths. I emphasise this point as I have made a somewhat 
different statement before this paper was published. (M. Planck, Ann. Phys. 
1 [ = 306], 719(1900).) 

t O. Lummer and E. Jahnke, Ann. Phys. 3 [ = 308], 288 (1900). 
i O. Lummer and E. Pringsheim, Verh. Deutsch. Phys. Ges. 2, 174 

(1900). 
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7. On the theory of the Energy Distribution Law 
of the Normal Spectrum20 

by M. Planck 

(read at the meeting of 14 December 1900) 
(cf. above p. 235)20a 

Gentlemen: when some weeks ago 1 had the honour to draw 
your attention to a new formula which seemed to me to be 
suited to express the law of the distribution of radiation energy 
over the whole range of the normal spectrum,* 1 mentioned 
already then that in my opinion the usefulness of this equation 
was not based only on the apparently close agreement of the 
few numbers, which I could then communicate to you, with 
the available experimental data,t but mainly on the simple21 

structure of the formula and especially on the fact that it 
gave a very simple logarithmic expression22 for the dependence 
of the entropy of an irradiated monochromatic vibrating 
resonator on its vibrational energy. This formula seemed to 
promise in any case the possibility of a general interpretation 
much better than other equations which have been proposed, 
apart from Wien's formula which, however, was not confirmed 
by experiment. 

Entropy means disorder, and 1 thought that one should find 
this disorder in the irregularity with which even in a completely 
stationary radiation field the vibrations of the resonator change 
their amplitude and phase, as long as one considers time inter­
vals long compared to the period of one vibration, but short 
compared to the duration of a measurement. The constant 
energy of the stationary vibrating resonator can thus only be 
considered to be a time average,24 or, put differently, to be an 
instantaneous average of the energies of a large number of 
identical resonators which are in the same stationary radiation 
field, but far enough from one another not to influence each 
other directly. Since the entropy of a resonator is thus deter­
mined by the way in which the energy is distributed at one 
time over many resonators, I suspected that one should evaluate 

* M. Planck, Verh. D. Phys. Ges. 2, 202 (1900). 
t In the meantime Mr. H. Rubens and Mr. F. Kurlbaum have given a 

direct confirmation for very long wave lengths. (S.B. Kdnigl. Preuss. Akad. 
Wiss. of 25 October, p. 929 (1900).)23 
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this quantity by introducing probability considerations into 
the electromagnetic theory25 of radiation, the importance of 
which for the second law of thermodynamics was originally 
discovered by Mr. L. Boltzmann.* This suspicion has been 
confirmed; 1 have been able to derive deductively an expression 
for the entropy of a monochromatically vibrating resonator 
and thus for the energy distribution in a stationary radiation 
state, that is, in the normal spectrum. To do this it was only 
necessary to extend somewhat the interpretation of the 
hypothesis of "natural26 radiation" which has been introduced 
by me into electromagnetic theory. Apart from this I have 
obtained other relations which seem to me to be of considerable 
importance for other branches of physics and also of chemistry. 

1 do not wish to give today this deduction—which is based 
on the laws of electromagnetic radiation, thermodynamics and 
probability calculus—systematically in all details, but rather to 
explain to you as clearly as possible the real core of the theory. 
This can probably be done most easily by describing to you a 
new, completely elementary treatment through which one can 
evaluate—without knowing anything about a spectral formula 
or about any theory—the distribution of a given amount of 
energy over the different colours of the normal spectrum using 
one constant of nature only and after that also the value of the 
temperature of this energy radiation using a second constant of 
nature. You will find many points in the treatment to be 
presented arbitrary and complicated, but as I said a moment 
ago I do not want to pay attention to a proof of the necessity 
and the possibility to perform it easily and practically, but to 
the clarity and uniqueness of the given prescriptions for the 
solution of the problem. 

Let us consider a large number of linear, monochromatically 
vibrating resonators—N of frequency v (per second),28 N' of 
frequency v, N" of frequency v"',..., with all N large numbers— 
which are properly separated and are enclosed in a diathermic27 

medium with light velocity c and bounded by reflecting walls. 
Let the system contain a certain amount of energy, the total 
energy £",(erg) which is present partly in the medium as 
travelling radiation and partly in the resonators as vibrational 

* L. Boltzmann, especially S.B. Kais. Ak. Wiss. Wien II, 76, p. 373 (1877 
= 1878]). 
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energy. The question is how in a stationary state this energy is 
distributed over the vibrations of the resonators and over the 
various colours of the radiation present in the medium, and 
what will be the temperature of the total system. 

To answer this question we first of all consider the vibrations 
of the resonators29 and try to assign to them certain arbitrary 
energies, for instance, an energy E to the N resonators v, E' to 
the N' resonators v , ... . The sum 

E+E' + E" + ... = E0 

must, of course, be less than Et. The remainder Et — E0 

pertains then to the radiation present in the medium. We must 
now give the distribution of the energy over the separate 
resonators of each group, first of all the distribution of the 
energy E over the N resonators of frequency v. If E is con­
sidered to be a continuously divisible quantity, this distribution 
is possible in infinitely many ways. We consider, however— 
this is the most essential point of the whole calculation—E to 
be composed of a well-defined number of equal parts and use 
thereto the constant of nature /? = 6-55 x 10~27 erg sec.30 This 
constant multiplied by the common frequency v of the 
resonators gives us the energy element31 e in erg, and dividing 
E by e we get the number P of energy elements which must be 
divided over the TV resonators. If the ratio thus calculated is 
not an integer, we take for P an integer in the neighbourhood.32 

It is clear that the distribution of P energy elements over N 
resonators can only take place in a finite, well-defined number 
of ways. Each of these ways of distribution we call a "com­
plexion",33 using an expression introduced by Mr. Boltzmann 
for a similar concept. If we denote the resonators by the 
numbers 1, 2, 3, ..., N, and write these in a row, and if we 
under each resonator put the number of its energy elements, 
we get for each complexion a symbol of the following form 

1 2 3 4 5 6 7 8 9 10 

7 38 11 0 9 2 20 4 4 5 

We have taken here 7V= 10, P= 100. The number of all possible 
complexions is clearly equal to the number of all possible sets of 
numbers which one can obtain in this way for the lower 
sequence for given N and P. To exclude all misunderstandings, 
we remark that two complexions must be considered to be 
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different if the corresponding sequences contain the same 
numbers, but in different order. From the theory of permuta­
tions we get for the number of all possible complexions 

N(N+l).(N+2) ... (N+P-\)_(N + P-1)\ 
1 . 2 . 3 ...P (/V-1)LP! 

or to a sufficient approximation,34 

__(N+P)N+P 

NNPP ' 

We perform the same calculation for the resonators of the 
other groups, by determining for each group of resonators the 
number of possible complexions for the energy given to the 
group. The multiplication of all numbers obtained in this 
way gives us then the total number R of all possible com­
plexions for the arbitrarily assigned energy distribution over all 
resonators. 

In the same way any other arbitrarily chosen energy distri­
bution35 E, E', E", ... will correspond to the number R of all 
possible complexions which must be evaluated in the above 
manner. Among all energy distributions which are possible 
for a constant E0=E+E' + E"+... there is one well-defined 
one for which the number of possible complexions R0 is larger 
than for any other distribution. We then look for this energy 
distribution, if necessary by trial, since this will just be the 
distribution taken up by the resonators in the stationary 
radiation field, if they together possess the energy E0. The 
quantities E, E', E", ... can then be expressed in terms of one 
single quantity E0. Dividing E by N, E' by N', ... we obtain 
the stationary value of the energy U„, Uv', [/,/', ... of a single 
resonator36 of each group, and thus also the spatial density of 
the corresponding radiation energy in a diathermic medium 
in the spectral range v to v + dv,31 

uv dv = — . Uv dv, 
c6 

so that the energy of the medium is also determined. 
Of all quantities which occur only E0 seems now still to be 

arbitrary. One sees easily, however, how one can finally 
evaluate E0 from the given total energy E„ since if the chosen 
value of E0 leads, for instance, to too large a value of E„ we 
must decrease it appropriately, and the other way round.38 
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After the stationary energy distribution is thus determined 
using a constant h, we can find the corresponding temperature 
i? in degrees absolute* using a second constant of nature 
k= 1-346 x 10"16 erg degree -1 through the equation 

1 d In R0 

& dE0 ' 

The product k In R0 is the entropy39 of the system of resona­
tors; it is the sum of the entropy of all separate resonators. 

It would, to be sure, be very complicated to perform 
explicitly the above-mentioned calculations, although it would 
not be without some interest to test the truth of the attainable 
degree of approximation in a simple case. A more general 
calculation which is performed very simply, using exactly the 
above prescriptions shows much more directly40 that the 
normal energy distribution determined in this way for a medium 
containing radiation is given by the expression41 

8 T 7 « V 3 d v • 

uvdv = -

which corresponds exactly to the spectral formula which I 
gave earlier 

CjA" 5 

Ex dX = — dX. 

The formal differences are due to the differences in the 
definitions of uv and Ex.. The first formula is somewhat more 
general inasfar as it is valid for an entirely arbitrary diathermic 
medium with light velocity c. I calculated the numerical values 
of h and k which I mentioned from that formula using the 
measurements by F. Kurlbaum and by O. Lummer and 
E. Pringsheim.t 

I shall now make a few short remarks about the question of 
the necessity of the above given deduction. The fact that the 
chosen energy element c for a given group of resonators must 
be proportional to the frequency v follows immediately from 

* The original states "degrees centigrade" which is clearly a slip 
[D. t. H.]. 

t F. Kurlbaum {Ann. Phys. 65 [ = 301], 759 (1898)) gives SlQo~S0 

= 0-0731 Watt cm - 2 , while O. Lummer and E. Pringsheim (Verh. Deutsch. 
Physik Ges. 2, 176 (1900)) give A,„r> = 2940 /* degree. 
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the extremely important so called Wien displacement law.42 

The relation between u and U is one of the basic equations of 
the electromagnetic theory of radiation. Apart from that, the 
whole deduction is based upon the single theorem that the 
entropy of a system of resonators with given energy is pro­
portional to the logarithm of the total number of possible 
complexions for the given energy. This theorem can be split 
into two other theorems: (1) The entropy ol the system in a 
given state is proportional to the logarithm of the probability 
of that state, and (2) The probability of any state is proportional 
to the number of corresponding complexions, or, in other 
words, any given complexion is equally probable as any other 
given complexion. The first theorem is, as far as radiative 
phenomena are concerned, just a definition of the probability 
of the state, insofar as we have for energy radiation no other 
a priori way to define the probability than the determination 
of its entropy. We have here one of the distinctions43 from 
the corresponding situation in the kinetic theory of gases. The 
second theorem is the core of the whole of the theory presented 
here: in the last resort its proof can only be given empirically. 
It can also be understood as a more detailed definition of the 
hypothesis of natural radiation which I have introduced. This 
hypothesis I have expressed before only in the form that the 
energy of the radiation is completely "randomly" distributed 
over the various partial vibrations present in the radiation.* 
I plan to communicate elsewhere in detail the considerations, 
which have only been sketched here, with all calculations and 
with a survey of the development of the theory up to the 
present. 

* M. Planck, Ann. Phys. 1 [ = 306], 73 (1900). When Mr. W. Wien in 
his Paris report (Rapports II, p. 38, 1900) about the theoretical radiation 
laws did not find my theory on the irreversible radiation phenomena 
satisfactory since it did not give the proof that the hypothesis of natural 
radiation is the only one which leads to irreversibility, he surely demanded, 
in my opinion, too much of this hypothesis. If one could prove the 
hypothesis, it would no longer be a hypothesis, and one did not have to 
formulate it at all. However, one could then not derive anything 
essentially new from it. From the same point of view one should also 
declare the kinetic theory of gases to be unsatisfactory since nobody has 
yet proved that the atomistic hypothesis is the only one which explains 
irreversibility. A similar objection could with more or less justice be 
raised against all inductively obtained theories. 
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To conclude I may point to an important consequence of 
this theory which at the same time makes possible a further 
test of its admissibility. Mr. Boltzmann* has shown that the 
entropy of a monatomic gas in equilibrium is equal to coRlnP0, 
where P0 is the number of possible complexions (the "permut-
ability") corresponding to the most probable velocity distri­
bution, R being the well known gas constant (8-31 x 107 for 
0 = 16), w the ratio of the mass of a real molecule to the mass 
of a mole, which is the same for all substances. If there are any 
radiating resonators present in the gas, the entropy of the 
total system must according to the theory developed here be 
proportional to the logarithm of the number of all possible 
complexions, including both velocities and radiation. Since, 
however, according to the electromagnetic theory of radiation 
the velocities of the atoms are completely independent of the 
distribution of the radiation energy, the total numbers of 
complexions is simply equal to the product of the numbers 
relating to the velocities and the number relating to the 
radiation. For the total entropy we have thus 

f In (P0R0) = f In P0 + f In R0, 
where/is a factor of proportionality. The first part of the sum 
is the kinetic, the second part the radiation entropy. Com­
paring this with the earlier expressions we find 

f=<aR=k, 
k 

or co = - = l - 6 2 x l 0 - 2 4 , 

that is, a real molecule is 1 -62 x 10~24 of a mole, or, a hydrogen 
atom weighs44 T64x 10~24 g, since H = 1-01, or, in a mole of 
any substance there are l/cu = 6T75 x 1023 real molecules.45 

Mr. O. E. Meyerf gives for this number 640 xlO2 1 which 
agrees closely.45 

Loschmidt's number L, that is, the number of gas molecules 
in 1 cm3 at 0°C and 1 atm is46 

, 1 013 200 
R . 273 . to 

Mr. Drudet finds L = 2-l x 1019 

= 2-76 xlO1 9 . 

* L. Boltzmann, S.B. Kais. Akad. Wiss. Wien II, 76,428 (1877 [= 1878]). 
t O. E. Meyer, "Die kinetische Theorie der Gase" 2nded.,p. 337(1899). 
X P. Drude, Ann. Phys. 1 [=306], 578 (1900). 
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The Boltzmann-Drude constant a, that is, the average kinetic 
energy of an atom at the absolute temperature 1 is 

a = fa)jK = fAi = 2-02x \0~i6. 

Mr. Drude* finds a = 2-65x lO"16 . 
The elementary quantum of electricity e, that is, the electrical 

charge of a positive monovalent ion or of an electron is, if 
e is the known charge of a monovalent mole,47 

e = e a j = 4-69xl0- ! Oe.s.u. 

Mr. F. Richarzf finds l-29x l f r 1 0 and Mr. J. J. Thomson:! 
recently 6-5 xlO" 1 0 . 

If the theory is at all correct, all these relations should be not 
approximately, but absolutely, valid.48 The accuracy of the 
calculated numbers is thus essentially the same as that of the 
relatively worst known, the radiation constant k, and is thus 
much better than all determinations of those quantities up to 
now. To test it by more direct methods should be both an 
important and a necessary task for further research. 

* loc. cit. 
t F. Richarz, Ann. Phys. 52 [=288], 397 (1894). 
X J. J. Thomson, Phil. Mag. (5)46, 528 (1898). 
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8. Notes 

1. In June 1896, Wilhelm Wien proposed for the energy-
distribution function the equation 

? A = C A - 5 e x p ^ - -

In deriving this equation he used the transformation equation 
obtained from the Doppler principle, 

(where r>, &0 are temperatures and A, A0 are wavelengths) and 
the Stefan-Boltzmann law for the total radiation (Wien 1896). 
Planck, by systematic consideration of the energy of a Hertzian 
resonator and of the energy and entropy of the radiation field, 
gave Wien's function the alternative form 

%-nbv3 I av 
u=—r— exp — 

(M = energy density, v = frequency, c = speed of light, a, b = 
radiation constants) (Planck 1899, p. 471). 

Independently of Wien, Friedrich Paschen in June 1896 
obtained from experimental data an equation similar to the 
first one mentioned above, 

?,A = c1A-«expf-A-|; 

(77= temperature, a = 5-660). These and other energy 
distribution functions obtained before 1896 by W. A 
Michelson (1887), H. F. Weber (1888), and R. von Kovesligethy 
(1890) have been discussed by H. Kangro (1970). 

la. Reference to the first notice in this Journal on Planck's 
speech of 19 October 1900. 

2. Ferdinand Kurlbaum presented the results of measure­
ments by himself and Heinrich Rubens of the radiation energy 
of a black body by spectral decomposition through "Rest-
strahlen" (residual rays) of fluorspar (A = 24 v. and 3T6[x) 
and of rock salt (A=51-2 y.) (soon afterwards also of quartz, 
A = 8-5 u). Rubens had already communicated these results 
verbally to Planck on 7 October 1900. By the evening of the 
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very same day Planck found the new equation characteristic 
of the beginning of the quantum hypothesis. One or two days 
later Rubens reconfirmed its agreement with the results of his 
observations. On that 7 October, Rubens told Planck, "that for 
the longest waves measured by him the law recently proposed 
by Lord Rayleigh ... is valid" (G. Hettner 1922, p. 1036). 

Later, after W. Nernst and Th. Wulf (1919) doubted the 
validity of the Planck radiation law, Rubens acknowledged 
that in 1900 he was pretty satisfied that the test was successful 
to within a few percent. (Rubens and Michel 1921, p. 577) 
Rubens made more exact measurements in 1920. It seems to be 
the sign of an historical process that knowledge must be gained 
in steps, if one does not wish to be drowned in the flood of 
new phenomena. 

3. Lummer and Pringsheim 1900 (circa September), 163-180; 
both speak simply of an invalidity of the Wien law, not of a 
partial validity. Therefore they suggest a new form, most 
probably influenced by knowledge of the Rayleigh equation: 

£ = C r A - 4 e x p - —— , l - 2<r< l -3 
V (AT)"/1' 

In the preceding year, despite systematic deviations of the 
measured values of c from each other and from the theoretical 
value, they still did not dare to make this decision. (Lummer 
& Pringsheim 1899, February and November) History teaches 
above all the important principle that a problem consists in 
distinguishing between errors of measurement and real dis­
agreement of experimental results and valid theories. 

4. Planck speaks here of Wien's law as a "limiting law". 
Lummer and Pringsheim had recently conceded that even for 
the energies measured by them at long wavelengths 
(12 u,^A:gl8 u) for low temperature the "Wien formula can 
still represent our observations" (Lummer & Pringsheim 1900, 
pp. 179-80; cf. 1899, p. 224). 

5. Date unknown. 

6. I.e., one-dimensional oscillator (Planck 1895, p. 290). 

7. U is more precisely the energy in the vicinity of the resonator 
out to distances that are "infinite" compared to the size of the 
resonator (Planck 1896, p. 161). 
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8. Planck knew very well in 1899 and March 190Q that he could 
make only the negative assertion: he said he did not find any 
other function (other than Wien's) which would satisfy his 
entropy equation (Planck 1899, p. 476; 1900, p. 730). 

9. ndU .nAU .f{Un) = n.dUAUf(U) 
(1) nf(nU)=f(U). 

Differentiating this functional equation with respect to n gives: 

M»v) 1 

using (1), 

and integrating, 

from (1) again: 

d(nU) 

f'(nU) 
AnU) 

AnU)' 

Auy-

—J \ 
n 

1 

~nU 

const 

nU 

const 

V 

v >•> 

d2S 
>dU2~~ 

a 

~ u 
dS 
dU 

= -a{ln U+C}, C=(ln/8+l) 

since a, /3 must be, according to W. Wien, functions of A, 
which again depends on the velocity of Maxwell's distribution 
(Planck 1900, 732; Wien, Ann. Phys. 1896, 294, 665), Planck 
got with a = (av) ~1 and jS = (ebv) ~1: 

I=- l f ln - 1 
& av \ bv J 

/ av 
U=bv . exp I —— 

(Planck 1900, p. 732-3. See note 19.) 

10. This discerning remark was justified in 1906 (Planck 1906, 
p. 218): 

(S„ 2, total entropy) 
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for one resonator: 

for n resonators: 

,. dU.AU 
dS, = - 4/f 5 U(U+hv) 

Un l^ + hv 
n 

d2S 
and with dzZt = f dU„. AU„ . 2 (Planck 1906) 

dUn
2 

d2Sn nk 
dUn

2 Un{Un + nhv) 

d2S„ nk 
dU2 Un(U+hv) U(U+hv) 

(assumed in 1900) nf(U„, U)=f(U) 
(1901, 555) nf(U„, n) =f(U) 

Planck acknowledged in 1901 that he had already called 
attention to the problem at the Physics Congress at the 
beginning of August 1900 in Paris, where Otto Lummer and 
Wilhelm Wien had criticized his conclusion for n resonators 
based on a single resonator (Planck 1901, p. 554-5; cf. Kangro 
1970. p. 220). 

11. The principle of "simplicity" is for Planck an important 
support for his argument; cf. his remarks at the end of the first 
paper and beginning of the second paper. 

12. For small /S the expression obviously reduces to 

d2S 
= + 

a 

dU2 U2' 

This corresponds to the case of large values of AT and 
becomes: 

dS a. 
_ = _ _ ( + const.) 

_ 1 
='f 
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=> U~T 

For large values /?> V we have: 

d2S a 

dU2 U(P+U) 

a 1 

which is equivalent to Wien's law. 
In December 1900 Planck changed, in consequence of his 
statistics, the sign: 

d2S oc 
——-= (cf. notes 16 and 41) 
dU2 U(P+U) 

13. d2S\d\J2 is the change in entropy increase. Only to the 
latter did Planck ascribe a physical meaning (March 1900): 
"the numerical measure of the irreversibility of the process or 
for the uncompensated transformation of work into heat" 
(Planck 1900, p. 731). The entropy itself, however—he argued 
—has no physical meaning. 

14. By the time of publication of this paper (October 1900) 
Planck thus had clearly made the connection with the 
probability concept, as he confirmed in December (second 
paragraph of the second paper). Perhaps he never lost sight of 
this concept, he who is known to have remained in communi­
cation with Boltzmann every year previously, for example at 
the Naturforschertagung in Munich in September 1899. 

Already in 1898 Planck had obtained, for the entropy of a 
resonator vibrating with frequency v0, the equation 

5 = In U0 

(Planck 1898, p. 472). Yet this equation had not appeared 
again. It would have led to the "Rayleigh term": 

d2S 1 

dlP^Uo2 

Apart from this, logarithmic expressions for the entropy in 
terms of the variables (T, V) were already common in thermo­
dynamics as was familiar to Planck. 
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15. The fact that there are two constants (corresponding to the 
two variables A and T) was emphasized by Planck especially in 
his December paper and even earlier, 1898, when he viewed the 
damping constant a and the resonator proper frequency v0 

as characteristic in the expression for the resonator energy 
(Planck 1898, p. 474). 

16. dS a 
- = -{lnU-ln(P+U)} 

= 1_ 
= f 

^{exp^-ir1 

Planck can apply his 1899 expressions for the energy-
radiation of the field in any direction: 

•» 00 /» c 
Kdv = 
o Jo 

K=2 Kdv= | ExdX 
o 

2c -
EX=^.K 

A2" 

where K = intensity per unit frequency interval of mono­
chromatic polarized radiation in one direction, Ex = intensity 
per unit wavelength of monochromatic polarized radiation in 
one direction, rfV~(c/A2) dX. 

On the other hand, K is connected in the stationary state with 
the energy U of one resonator by the equation 

K = (v2lc2)U=UIX2. 

Since according to the relation S= f(Ulv) = af1(Ulf}) we have 

B~v = cl\ 

it follows that 

Ex ~ (2c2/A5) e_^aT_x (c = speed of light) 

and by analogy to the 1899 theory [£A = (2c2o/A5)exp( — acjXT)]: 

1 
£A = (2c26/A5). 

e-bc/(lT\_ J 

= CA~5{exp (c/AT)- l}~i. (c = radiation constant) 
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The total energy density (taking all resonances together) would 
be (1899): 

£ = ( 4 V C ) . £ A 

877C0 1 

\5 e-bc/aTA_\ 

(Planck 1899, p. 458, 461, 475; cf. 1901, p. 561). 

17. Max Thiesen first modified the Wien distribution equation 
on the basis of deviations which the values measured up to 
that date had given (February 1900): 

Ex = cx VATA-5 exp (-c2 ' j \T). 

If one retrospectively combines the Wien form (E2) with the 
form first proposed in June 1900 by Lord Rayleigh, 

[EA] = cx . A- 4exp(-c 2 /AT) 

by taking the geometric mean, then one obtains (including the 
various constants cx, c2, cx, c2, cx, c2 as determined by the 
Stefan-Boltzmann law and the displacement law) exactly: 

El=VE2E3. 

For this reason Planck, Lummer and Pringsheim as well as 
Rubens emphasized correctly the relatively good agreement of 
Thiesen's formula with the observed values in the intermediate 
region. 

18. Not yet discovered. 

19. With the help of this form (derivation: Planck 1901, 
pp. 559-61) of the so-called displacement law Planck could 
make the comparison fi~v. The name "displacement law" 
[Verschiebungsgesetz] was introduced for the first time in 1899 
by Lummer and Pringsheim, but the law itself is older. In 
1887 W. A. Michelson first attempted to give a form A,„2r> = 
constant (& = temperature); in 1888 H. F. Weber wrote 
A,„=l/br (where b in general depends on the nature of the 
substance). W. Wien appealed to this law in his derivation of 
the transformation formula 

&\ = &0\0 

(1893; and 1894, without assuming equal distribution). Earlier 
(1890) R. v. Kovesligethy had already published such a form. 
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Planck's original form, 

EdX = Ts<f>(XT)dX 

(Planck 1901, p. 559) can first be found in a paper of Lord 
Rayleigh (1898), and then, independently, in a paper of Max 
Thiesen (1900). Both emphasize that in it i/> depends only on 
the single variable XT (Rayleigh 1898, p. 522). The form 
/ . A5 = 9(AT) appeared first in October 1900 in a paper of 
Joseph Larmor (cf. Kangro 1970, passim). 

20. By "Normalspectrum" Planck means the blackbody spec­
trum: this must be distinguished from the term "normales 
Spectrum" then also in use, to mean the graph of the energy 
of a spectrum as a function of the wavelength. 

20a. Reference to the announcement in this journal of 
Planck's speech on December 14, 1900. 

21. Cf. note 11. The principle of simplicity can be traced 
throughout the entire history of physics. Thus for example 
Lord Rayleigh in 1889 gave on the ground of simplicity the 
energy distribution function of H. F. Weber preference over 
other functions (Rayleigh 1889, p. 460). Also J. P. Joule in 
1848 used this principle to justify his hypothesis of the recti­
linear movement of "atoms", R. E. Clausius in 1879 to support 
the one fluid hypothesis in electricity. 

22. This refers to the equation 

(U U I U\ I u S=a./ l (^) = a { ? ln - - ( l + _) ln( l + -
October 1900 derived from: 

d2S a 

dU2 U($+U) 

23. The detailed report on the results of measurements of the 
energy of very long wave radiation contained of course the 
values already communicated orally to Planck by Rubens on 
7 October (note 2). 

24. In the 1897 theory for radiation intensity in the medium 
Planck introduced the average values—in reference to W. 
Wien—arguing that only these are accessible to physical 
measurements (Planck 1897, p. 1130). Already in 1898 he 
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used the time average of the energy U in the neighborhood 
of a resonator (Planck 1898, p. 459). In 1899, J. Konigsberger 
attempted to save W. Wien's statistics of the velocities of many 
molecules agitated by radiation against objections by replacing 
these statistics in the same way by the time-average for a single 
molecule (Konigsberger 1899, pp. 249-50). 

25. Several (N) resonators of the same vibration frequency are 
treated statistically later (see below). 

26. Planck called the radiation "natural" since—as he argued 
—the phenomena of absorption and emission of heat rays 
indicate that the exciting waves of the radiation field in nature 
are not without connection with the energy U of the resonators. 
Mathematically this connection will not be guaranteed since 
certain coefficients of the partial vibrations in the Fourier 
decomposition of the resonator energy as a function of the field 
intensity are unknown. So the partial vibrations—as many as 
possible—(of small amplitude) ought to be reduced on the 
average to zero. The field radiation should therefore not be 
considered "synchronized with the resonator", but rather dis­
ordered (Planck 1898, p. 469; 1897, pp. 1132-3). "Nature", a 
favorite concept of Planck, demonstrates the existence of 
irreversible processes. Nature, he said, decides which con­
nection between the properties (wavelength, amplitude, phase) 
of the exciting wave and of the "secondary conductor" 
( = Hertzian resonator) exist (Planck 1895, p. 295). 

27. Penetrable by heat. 

28. Planck, like earlier theoreticians (e.g. E. Lommel, 1871) 
but unlike the experimentalists, uses the frequency instead of 
the wavelength (cf. also J. Stoney, 1871). 

29. I.e., without considering the energy in the "medium of 
the propagating radiation". 

30. Modern value: « = 6-626x 10 - 2 7 erg sec. 
Planck's calculation: The difference between the two 

measured values Stl, S,2 of the energy radiated per second into 
the air by the same cubic centimeter of a black body at two 
different temperatures, say /2=100° a r |d t i=0°, is compared 
with the total energy density in space, 
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iirhv3 dv 
Uv dv-

0 c3 ehvlkT-\ 

which gives: 

n 4(S 1 0 0 -S 0 )_48irfc«^ 1 
c(T2*-TS) c3h3 f -F4 

(c = speed of light). 
From the transcendental equation obtained by calculating 

the energy u at the wavelength where it is a maximum, he finds 

ch 
(2) Am = — 

where /3 = 4-9651 ... From (1) and (2) and from a measured 
value of AT there follows: 

// = 6-55x 10 - 2 7 erg sec 

/c= 1-346 x 10-16erg/deg 

(Planck 1901, pp. 561-63). The modern value of k is 
l-3805x 10-16erg/deg. 

Theoretically one must have—contrary to Planck's lifelong 
opinion (first stated in 1901, pp. 822-23)— 

h + b and k ^ bja 

(cf. Kangro 1970, pp. 144-47; for b, a see note 1). 

31. This states in words the equation: 

e = hv. 

The expression "energy quantum" for e was first coined by 
Einstein (1905). Planck first spoke of a quantum of action h in 
1906, yet there was still no mention of a "quantum hypothesis" 
even at this time, to say nothing of a "quantum theory". In 
the following years Planck, referring to the phase space of 
J. W. Gibbs, emphasized the quantity of action, whereas 
Einstein preferred to speak of energy. 

32. This postulate was never used again. L. Boltzmann had 
suggested a similar approximation in 1877 in order to approxi­
mate a continuum by the statistics of a set of discrete energy 
values (L. Boltzmann 1878, pp. 393-94). 

He used discrete energy values as early as 1872 and pointed 
explicitly to the fact that the method of approximating con­
tinuous quantities by discrete quantities is based on a 
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well-established tradition (Lagrange, Stefan, and Riemann) 
(Boltzmann 1909, vol. 1, p. 347; for English translation see 
S. G. Brush, "Kinetic Theory", Oxford, 1966, vol. 2, pp. 117-
132). The idea is even older; it is found for example in the geo­
metric derivation of the law of gravity by Isaac Beeckman 
(1618). 

33. "Complexion", according to Boltzmann, is a method of 
distributing integer multiples/) of the energy e which belong to 
a given total energy E=Xe among n molecules. Boltzmann 
considered the distribution of energy elements e, 2e ... pe in 
such a way that w0 ... wp molecules have 0 ... pe energy. A 
particular distribution k has 

P- n' 
(w0)!(Hq)! 

permutations. For this distribution of states the probability is 
defined by Boltzmann as PJJ, where J is the sum £ Pk of all 
possible distributions: * 

(A + w-1)! 
/ = 1 TT7TT- (Boltzmann) 

(n— \)\ A! 
In contrast to Boltzmann, Planck left out the first step and 

defined at once the number of complexions of all state distri­
butions as the "number of all possible complexions": 

(N+P-l)\ 

(N-1)1 PI 

this expression corresponding to Boltzmann's J (cf. Klein 
1962, p. 473). 

34. Planck applied Stirling's formula in first approximation. 
If one wished to take account of e~" as well as n1'2, then under 
the assumption NpP there would be no change in Planck's 
approximation. N>P is valid for AT<20760 p. deg, and thus 
even for all the energies of quartz residual rays measured by 
Rubens and Kurlbaum (A = 8-5/x, 77< 1800°K). However, 
Boltzmann himself used a simplification to calculate his J just 
for the opposite assumption, namely A>« (Boltzmann 1878, 
399). 

56 



35. After the distribution of the other Ek among the individual 
groups of resonators k with frequency vk, the statistics must be. 
according to Planck's idea, determined anew for each group 
of resonators. 

36. Therefore he did not—as later, in 1901—average the total 
energy of all resonators but only that of each group of 
resonators. 

37. See note 16; according to this set 

_4nK 

c 

/ 
u dv 

o 

38. Thus the energy of the radiation field is included as part 
of the energy U in the neighbourhood of the resonator and is 
""analyzed" by the resonator (Planck 1898, p. 461). 

39. Boltzmann writes the entropy, which he defines as j* dQjT 
iwhere "7" is the average kinetic energy of a gas molecule"), 
in the form 

Q, the measure of permutability, is proportional to the 
logarithm of the permutability P (essentially to its denomi­
nator), and therefore to 

— 2_, Wabc- l n wabc--
a,b,c... 

Planck reduces it to the entropy as he has defined it: 

dQ 
T 

dQ 

- = f l n P 

RuAr\P=k\nP 

where 7"= 4 R&ui, f> = temperature,aj = matom/Az"gram_atom(Planck 
1901. p. 564-65). 

40. Avoiding the procedure of maximization. 
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41. This expression for uv dv has probably been obtained from 
the form statistically calculated for U before (cf. 1901, 556-
558): 

f/v+p)*H 

^ ^ ^ ^ ^ ^ ^ N" .Pr 

the equation SN = k In R leads to: 

U s i n § R*y'\TV'pp a n d U„ = Pe = NU 

SN=kN{ ( 1 + - J lnfl + - J -— In -

which implies: 

s = ^ (e=fe) 

rfS_l 
oT/=? 

f7=Mexp(fe/ki>)-l)}-1 

(Planck 1901, p. 561). Thus it is certain that Planck knew U 
in December 1900; in October, however, he knew it only up 
to a constant factor k (and h). 

42. Therefore known already in October to Planck (see note 
19). 

43. Not until 1913 did Planck refer back again to Boltzmann's 
logarithm of the denominator of the permutation number, i.e. 
to the quantity which Boltzmann essentially had equated to 
the entropy 

-^w„\nw„, 

in order to compute from it by two different constraints first 
the Maxwell velocity distribution, then the radiation energy 
distribution function: 

Constraints: x 

1. Gas and radiation VSM'„ = 0 
I 

00 

2. Ideal gas: ]T £kin(n) Sw* = 0 
i 
CO 

Radiation: ^ (" — 2) §w„ = 0 
1 

(Boltzmann 1878, p. 402, 427-8; Planck 1919, pp. 122-3. 127 
139). 
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44. Modern value (1971): mH+ = 1-67x 10~24 g. 

45. Modern value (1971): 6-022 x 1023 mol"1. Planck inter­
preted Meyer's results incorrectly. For Meyer spoke of "640 
trillion molecules per mg" of hydrogen. This number, however, 
corresponds to 

N= 640 x l 0 1 8 x l 0 3 x 2-016 
= 1-29 x 1024 molecules mol" l . 

Others in Meyers' time also used such nearly doubled values 
for the molecule number. 

46. # = • £ = -

_p M 

~RT~m 

n 
=~V 

= 76. 13-595. 981 gem"1 s"2 

= 1013 500 gem"1 s-2 

where a> = mjM (see above), pV=RT, V= molar volume, 
n = number of molecules in a mol, p = 1 at. of pressure at 0°C, 
lHg = length of the corresponding mercury column, pHs = specific 
gravity ( = dHs: g), g acceleration of gravity at earth's surface. 

4". e (Faraday's constant) = 1-29 x 1010 c.g.s. (Richarz and 
Thomson) 

[ = 96,100 coulombs mol - 1 ] 

Modern value (1971): 96,487 coulombs mol - 1 . 
The modern value (1971) for e is 4-803 x 1010 c.g.s.; thus 

Planck's value was by far the most accurate one known up to 
1900. 

48. Planck referred to the mass of the hydrogen atom m and 
the elementary quantum of electricity e by the collective names 
"elementary quanta of matter and electricity" (1901). 
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