
Quantum mysteries revisited 
N. David Mermin 
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853-2501 

(Received 30 March 1990; accepted for publication 28 April 1990) 

A gedanken gadget is described, based_ on an idea of Greenberg_er, Horne, a~d Zeilin~er, that 
provides a more powerful demonstration of quantum nonlocahty than Bell s analysis of the 
Einstein-Podolsky-Rosen experiment. 

I. INTRODUCTION 

Many years ago I described. in these pages a gedanken 
demonstration, 1 designed to convey the essential character 
of John Bell's famous analysis 2 of the Einstein-Podolsky
Rosen experiment 3 to somebody unacquainted with _the 
quantum theory. My demonstration consisted of two ~1de
ly separated detectors, each triggered by one of a pair of 
particles that originated earlier from a common source. 
Each detector had a switch that could be set to one of three 
positions before it was triggered. When triggered it flashed 
either a red light or a green one. The striking thing about 
the behavior of this device was that for one long series of 
runs (in which settings of the two switches always agreed) 
the resulting data seemed to require, in the absence of. 
spooky actions at a distance, an explanation that was in
compatible with the statistical behavior _of another l?ng 
series of runs (in which the two switch settmgs always disa-
greed). . 

Daniel Greenberger, Michael Horne, and Anton Ze1-
linger4 recently invented a new version of the EPR experi
ment which demonstrates the spookiness of quantum me
chanics even more dramatically than Bell's analysis of 
EPR. I describe below a gedanken demonstration in the 
style of my earlier one, inspired by, but somewhat simpler 
than, an analysis of the GHZ experiment by ~obert Clif
ton, Michael Redhead, and Jeremy Butterfield.- I shall fol
low the strategy of Ref. I, first describing the device in 
entirely nontechnical terms, suitable for an audience of 
nonscientists but also not inappropriate for an audience of 
hardened quantum mechanicians to help them shed their 
quantum mechanical instincts and regain the sense of_won
der that such behavior can inspire in the less well tramed. 

What makes this new device more dramatic than the old 
one is that the explanation apparently required by the data 
accumulated in one long series of runs is now refuted not by 
the statistics of the data accumulated in another long series 
of runs of a different kind, but by the outcome of one crucial 
experiment consisting of a single new kind of run. 

II. QUANTUM MYSTERIES FOR ANYONE 

My new device ( pictured in Fig. 1) has three widely sep
arated detectors (a complication) but each detector has 
only two switch settings (a simplification). As earlier, a 
detector, when triggered, flashes red or green. As earlier, 
all detectors are far apart from the source, there are no 
connections between the detectors, and no connections 
between the source and the detectors other than those me
diated by a group of particles ( now a trio rather than a 
pair) that originate at the source and fly away, one to each 
detector. 

A run of the experiment consists of setting the switch on 
each detector to one of its two positions (labeled 1 and 2), 
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pressing a button at the source ( to release a trio of particles, 
one aimed at each detector), and recording the color subse
quently flashed at each detector. We only consider the data 
acquired for four of the eight possible switch settings, those 
in which the number of detectors set to 1 is odd. (The data 
for the other four settings are unremarkable and of no rel
evance for the argument that follows.) We call the detec
tors A, B, and C, and specify pertinent facts about them by 
listing the three pieces of information (switch settings or 
colors flashed) in that order. 

If just one detector is set to 1 ( and the others to 2), then 
an odd number of red lights always flash-i.e., either all 
three detectors flash red, or there is one red flash and two 
green ones. (All four outcomes-RRR, RGG, GRG, or 
GGR-are equally likely, but this detail is of no impor
tance.) If all three detectors are set to 1, then an odd num
ber of red lights is never observed to flash-either two of 
the three flash red or all three flash green. . 

Let us set aside, for the moment, the 1 11 case ( it will 
return to haunt us) and consider the cases 122, 212, and 
221 in which just one detector is set to 1. Because an odd 
number of red lights always flash in any of these three 
cases, whenever the switches are so set we can predict with 
certainty what any one of the three detectors will do in a 

I 8 

Fig. I. The three detectors A, B, and C, viewed from above (down_the x 
axis). Their switch settings are 221. When the button on the source m the 
middle is pushed, three particles (shown en roule) emerge and move in 
the horizontal plane to the three detectors. 
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run, merely by noting what happens at the other two. For 
should the other two flash the same color ( RR or GG) 
then the third will have to flash red, but should the other 
two flash different colors (RG or GR) then the third will 
have to flash green. 

We now follow Einstein, Podolsky, and Rosen (and the 
gedanken demonstration of Ref. l) in drawing an inference 
that seems well nigh inescapable. Since there are no direct 
connections between the detectors, their behavior can only 
be coordinated because all three are triggered by particles 
that came from a common source. This fact and this fact 
alone must contain the explanation for why we can learn in 
advance what color will flash at a given detector, say A, 
from measurements made far away at B and C. lnforma-

. tion telling the detector at A what color to flash in order to 
maintain the observed consistency with the colors flashed 
at B and C must somehow be encoded in the particle that 
triggers A. Since that particle could indeed have been co
ordinated with the particles that triggered Band C when all 
three were back at their common source, this explanation 
seems both inevitable and entirely reasonable. 

We can apply this reasoning to any one of the three de
tectors (by moving it farther from the source so that before 
it flashes we have the opportunity to observe what colors 
flash at the other two). We conclude that in each run of the 
experiment each particle must be carrying to its detector 
instructions on what color to flash, and that an odd number 
of the particles must specify red. Thus for a given choice of 
switch settings (say 122) the particles heading for detec
tors A, B, and C must respectively be carrying instructions 
RRR, RGG, GRG, or GGR, but never GRR, RGR, 
RRG, or GGG. Which of the four allowed groups of 
instructions they collectively carry is revealed only when 
the lights flash. All of the above reasoning applies equally 
well, of course, to 212 and 221 runs. 

In the absence of connections between the detectors and 
the source, a particle has no information about how the 
switch of its detector will be set until it arrives there. Since 
in each run any detector might turn out to be either the one 
set to 1 or one of the ones set to 2, to preserve the perfect 
record of always having an odd number of red flashes in 
122, 212, and 221 runs, it would seem to be essential for 
each particle to be carrying instructions for how its detec
tor should flash for either of the two possible switch set
tings it might find upon arrival. 

The instructions carried by each particle can be symbo
lized by a pair of letters: ~, ~, ~, or g. The upper letter 
specifies the color to be flashed if the switch is set to I, and 
the lower, the color for setting 2. If a particle is of the type 
~, for example, its detector will flash red if the switch is set 
to 1 and green if the switch is set to 2. 

The totality of flashing instructions carried by the three 
particles in a given run can be summarized by listing the 
instructions carried by all three of them. Thus a run in 
which the instructions carried by the particles were ~ ~ ~ 
would result in RRR if the switch settings were 122, GGR 
for 212, and G RG for 221. Since each of the three possible 
switch settings results in an odd number of red flashes, this 
is indeed a legal set of instructions. [An example of an 
illegal set of instructions is~:~, for this gives an even num
ber of red flashes (GRR) for the switch setting 212.] 

It is not hard to enumerate all the legal instruction sets. 
First note that three of the six positions in a legal instruc
tion set corresponding to any one of the three choices 122, 
212, or 221 for the switch settings, must contain an odd 
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number of R's, since that particular setting might be en
countered in any run, and since only odd numbers of red 
flashes are ever observed. Thus the only possible entries for 
the positions corresponding to the switch settings 122 are 
(leaving blank the entries not relevant to those three set
tings): 

R-- R-- G-- G--
-RR . -GG -RG -GR 

(1) 

We can next count the ways to fill in the blanks in these 
four forms so as to produce the correct data for switch 
settings 221. Since each of the four already specifies the 
color flashed at detector B for setting 2, to ensure that any 
221 run produces an odd number of red flashes there are 
only two choices available for the two unspecified 221 en
tries, for each of the four forms: RR or GG if the specified 
entry is R, and RG or GR if the specified entry is G. This 
raises the number of possible forms to eight, each of which 
leaves only the entry for setting I at detector B unspecified. 
But that entry is now entirely determined by the entries at 
settings 2 for detectors A and C ( having to be R, if the latter 
two entries are the same color and G, if they are different). 
There are thus just eight legal instruction sets. 

Out of the 64 possible instruction sets here are the eight 
legal ones: 

RRR RGG GRG GGR 

RRR RGG GRG GGR 

RGG RRR GGR GRG 

GRR GGG RRG RGR. (2) 

They are arranged in the same horizontal order as the 
forms in ( 1), with the two possibilities for each form placed 
directly above one another. [ It is easy to check explicitly 
that each instruction set (2) does indeed give an odd num
ber of red flashes when a single detector is set to 1. Since 
there are only eight legal instruction sets and the eight giv
en in ( 2) are all legal, you don't actually have to go through 
the process of filling in the blanks in ( 1 ) to know that this 
has to be the right list.] 

Now, finally, we consider the fourth type of run, in 
which all three detectors are set to 1, and an odd number of 
red flashes is never observed. The above instruction sets 
must determine the outcomes of these runs as well. For 
who is to prevent somebody from flipping the two switches 
set to 2 over to 1, just before the particles arrive? But an 
inspection of the upper rows in (2) reveals that everyone of 
the eight allowed instructions sets results in an odd number 
of red flashes when all three switches are set to I. If the 
instruction sets existed, then 111 runs would always have to 
produce an odd number of red flashes. But they never do, as 
I remarked in the third paragraph of this section, quite 
possibly without you strenuously objecting. 

Thus a single 111 run suffices all by itself to give data 
inconsistent with the otherwise compelling inference of in
struction sets. 

This is strikingly more powerful than Bell's theorem for 
the two-particle EPR experiment. In the version illustrated 
by the gedanken demonstration of Ref. 1, the existence of 
instruction sets was apparently forced by the data pro
duced by the two detectors ( the colors that flash always 
agree) when the settings of both switches agreed. It was 
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refuted by the data produced when the two switches had 
different settings, but that refutation required enough runs 
to establish a significant difference between the data re
quired by the instruction sets ( colors agree at least 33! % of 
the time) and the actual behavior dictated by quantum 
mechanics (colors agree only 25% of the time). Contrast 
this with the three-particle device inspired by the GHZ 
experiment: Instruction sets require an odd number of red 
flashes in every 111 run; quantum mechanics prohibits an 
odd number of red flashes in every 111 run. 

III. QUANTUM SOLUTIONS FOR PHYSICISTS 

Here is how the device works. What emerges from the 
source are three spin-1/2 particles ( a, b, and c) in a spin 
state whose structure is specified below. The particles fly 
apart to the detectors in the horizontal plane. Define the z 
direction for each particle to be along its line of flight. The 
detectors contain Stern-Gerlach magnets which measure 
the vertical (x) component of the spin when their switch is 
set to l and the horizontal component perpendicular to the 
line of flight (y) when their switch is set to 2. Red flashes 
for spin-up, green for spin-down. 

Here is a spin state that produces the remarkable Green
berger-Horne-Zeilinger corre1ations described in Sec. II. 
Measure angular momentum in units of !Ii so that the spin 
operators for each particle can be taken to be the Pauli 
matrices. Consider the three commuting Hermitian opera
tors 

a:~~, a;~~, a;o-;ifx - (3) 

They commute because all pairs of the six spin operators 
out of which they are constructed commute, except for 
those associated with the x andy components of the spin of 
a single particle, which anticommute. This doesn't cause 
any trouble, however, because converting the product in 
one order to the product in the other order always involves 
an even number of such anticommuting interchanges. 

Being commuting and Hermitian, the three operators i~ 
( 3) can be provided with simultaneous eigenstates. Since 
the square of each operator is unity, the eigenvalues of each 
can only be + 1 or - l. For simplicity we pick the state 
with all three eigenvalues + 1, which preserves the sym
metry among· the particles. The specific form of the state 
vector is unimportant, but the curious can find it in the 
Appendix. 

Since the components of the spin vectors of different par
ticles commute, we can simultaneously measure the x com
ponent for one particle and they components for the other 
two. Because the spin state is an eigenstate of all three of the 
operators (3) with eigenvalue unity, the product of the 
results of each of the three single spin measurements has to 
be + 1, regardless of which particle we pick for the x-spin 
measurement. Since + 1 flashes red and - 1 flashes green, 
there must indeed be an even number of green flashes and 
thus an odd number of reds. 

What about the result of three x-spin measurements, de
clared in Sec. II never to result in an odd number of red 
flashes? Translating this into spin language tells us that the 
product of the three results must always be - 1. The Her
mitian operator corresponding to that product is 

(4) 

so for the declaration to be correct, it must be that the 
eigenstate of the three operators ( 3) with eigenvalue + 1 is 

733 Am. J. Phys .. Vol. 58, No. 8, August 1990 

also an eigenstate of the operator ( 4) with eigenvalue - 1. 
This is easily confirmed. Indeed, one readily verifies that 

the operator ( 4) is just minus the product of the three oper
ators (3): 

0-:~ifx = - (0-:~ify)(a;o-!ify)(a;~ifx). (5) 

Since we are in an eigenstate with eigenvalue + 1 of each of 
the three operators appearing on the right of ( 5), we are 
indeed also in an eigenstate of 0-:~ifx with eigenvalue 
- l. 

Note that the consequence of the EPR reality criterion 
extracted in Sec. II, if translated into quantum theoretic 
terminology, would also assert that the state was an eigen
state of the operator ( 4), but with the wrong eigenvalue. In 
this sense the GHZ experiment provides the strongest pos
sible contradiction between quantum mechanics and the 
EPR reality criterion. 

The crucial minus sign in ( 5), totally destructive of the 
possibility of instruction sets, comes from the fact that i.n 
working out that identity it is necessary to interchange the 
anticommuting operators~ and~ in order to get rid of all 
they components [ through ( cl,, ) 2 = 1] and be left with a 
product of three x components. It is only that one instance 
of uncompensated anticommutation that produces the 
conclusion so devastating to the hypothesis of instruction 
sets. This is extremely pleasing, for it is just the fact that the 
x and y components of the spin of a single particle do not 
commute, which leads the well-educated quantum mecha
nician to reject from the start the inference of instruction 
sets (which have to specify the value of both of these non
commuting observables), making it necessary for me to 
disguise what was going on in Sec. II in order to prevent so 
knowledgeable a person from dismissing this article as rub
bish before reaching the interesting part. 

I know of no other Bellian refutation of Einstein, Po
dolsky, and Rosen in which the mathematical details of the 
refutation so closely reflect the broad interpretive doctrines 
of the quantum theory that EPR tried to challenge. The 
entries in the instruction sets are precisely the conjectured 
c-number values for all the~ and cl,,-values that appear 
to be the only explanation for the remarkable correlations. 
And the logic of red and green lights in Sec. II precisely 
parallels the algebraic behavior of the four operators ( 3) 
and ( 4) except for that one devastating anticommutation. 
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APPENDIX 

The above argument does not use the form of the spin
state vector that is a simultaneous eigenstate of the three 
operators ( 1 ), but here it is anyway. The state vector is 
Ill= (1/v2)(11,I,l) -1- 1, - 1, - 1)), where I or - I 
specifies spin-up or -down along the appropriate z axis. 
And the other seven simultaneous eigenstates ( corre
sponding to the other choices of eigenvalue ± I for each of 
the three operators) are given by the seven other distinct 
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forms for ( 1/v'L) ( Jm1,m 2,m3 ) ± I - m 1, - m2, - m3 ) ). 

This follows immediately from the fact that 

O"xl ± 1) =I+ l), io-YJ ± 1) =+I + 1) · (Al) 
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This article proceeds from the premise that one of the major reasons for the perceived crisis in 
science education is the failure of our colleges and universities to provide the type of preparation 
that precollege teachers need to teach science effectively. The perspective taken is based on many 
years of teaching physics and physical science to prospective and practicing teachers at all grade 
levels. The inadequacy of the present system of preparing teachers is examined and an argument is 
presented for offering special physics courses for teachers. Experience at the University of 
Washington provides the basis for a discussion of the type of intellectual objectives and 
instructional methods that should characterize such courses. 

I. INTRODUCTION 

It is generally accepted that science education in the 
United States is in serious difficulty. Between the seventh 
and twelfth grades, the number of students taking science 
drops by more than 50%. 1 With less than 2 years of science 
required for graduation by the majority of states, 2 most 
graduates of American high schools have taken consider
ably less science than their counterparts in other countries. 
When achievement is compared, American students do not 
perform as well as others. 3 If present trends continue, the 
number of students entering college with _both the interest 
and the preparation to pursue a scientific or technical 
profession will not be sufficient to meet our national needs. 

This article addresses one aspect of the current crisis: the 
failure of our colleges and universities to provide the type of 
preparation that precollege teachers need to teach science 
effectively. The discussion is in terms of physics, but the 
situation in other sciences is similar. 

A. The problem 

Over the last 2 decades, the percentage of first-year grad
uate students in physics who have been educated in this 
country has been dwindling with respect to the foreign en
rollment. 4 This situation is only one consequence of a pro-
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cess that has critical impact beyond the profession: the con
tinual narrowing of the pipeline in physics throughout the 
period of formal education. 5

_ 

The greatest constriction occurs during the precollege 
years and is demonstrated by the fact that only about 20% 
of the students in American high schools study physics. 6

•
7 

Reasons for the steady attrition are complex. Political, so
cial, economic, and intellectual factors all play a role, and it 
is difficult to separate cause from effect. 8 However, al
though it cannot be proved, it seems reasonable to assume 
that one of the most important factors affecting enrollment 
and retention of students is the shortage of teachers ade
quately prepared to teach physics. 6

•
7 According to a recent 

survey by the American Institute of Physics, about one
third of the teachers with physics assignments have neither 
majored in the subject nor taught it on a regular basis.6

•
7 

The problem of inadequate teacher preparation is not 
limited to high school, but extends down into middle and 
elementary school. There, lacking the proper background 
to teach with enthusiasm and confidence, teachers often 
transmit to students a dislike of science, especially physical 
science. With a negative attitude often firmly established 
by the ninth grade, most students do not voluntarily take 
physics in high school. Failure to do so decreases the likeli
hood that students will complete a college course in the 

© 1990 American Association of Physics Teachers 734 


