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 49 1

 IV. On the Jynamical Theory of Gases. BY J. CLERK MAXWELL, F.RAS. L. & E

 Received May 16,-Read May 31, 1866.

 THEORIES of the constitution of bodies suppose them either to be continuous and homo-

 geneous, or to be composed of a finite number of distinct particles or molecules.

 In certain applications of mathematics to physical questions, it is convenient to

 suppose bodies homogeneous in order to make the quantity of matter in each differential

 element a function of the coordinates, but I am not aware that any theory of this kind

 has been proposed to account for the different properties of bodies. Indeed the pro-

 perties of a body supposed to be a uniform plenum may be affirmed dogmatically, but

 cannot be explained mathematically.

 Molecular theories suppose that all bodies, even when they appear to our senses

 homogeneous, consist of a multitude of particles, or small parts the mechanical rela-

 tions of which constitute the properties of the bodies. Those theories which suppose

 that the molecules are at rest relative to the body may be called statical theories, and

 those which suppose the molecules to be in motion, even while the body is apparently

 at rest, may be called dynamical theories.

 If we- adopt a statical theory, and suppose the molecules of a body kept at rest in their

 positions of equilibrium by the action of forces in the directions of the lines joining their

 centres, we may determine the mechanical properties of a body so constructed, if distorted

 so that the displacement of each molecule is a function of its coordinates when in equi-

 librium. It appears from the mathematical theory of bodies of this kind, that the forces

 called into play by a small change of form must always bear a fixed proportion to those

 excited by a small change of volume.

 Now we know that in fluids the elasticity of form is evanescent, while that of volume

 is considerable. Hence such theories will not apply to fluids. In solid bodies the

 elasticity of form appears in many cases to be smaller in proportion to that of volume

 than the theory gives @, so that we are forced to give up the theory of molecules whose

 displacements are functions of their coordinates when at rest, even in the case of solid

 bodies.

 The theory of moving molecules, on the other hand, is not open to these objections.

 The mathematical difficulties in applying the theory are considerable, and till they are

 surmounted we cannot fully decide on the applicability of the theory. We are able,

 however, to explain a great variety of phenomena by the dynamical theory which have
 not been hitherto explained otherwise.

 The dynamical theory supposes that the molecules of solid bodies oscillate about their

 * [In glass, according to Dr. EVERETT'S second series of experiments (1866), the ratio of the elasticity of form

 to that of volume is greater than that given by the theory. In brass and steel it is less.-March 7, 1867.]
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 50 MR. CLERK MAXWELL ON THE DYNAMICAL THEORY OF GASES.

 positions of equilibrium, but do not travel from one position to another in the body.

 In fluids the molecules are supposed to be constantly moving into new relative positions,

 so that the same molecule may travel from one part of the fluid to any other part. In

 liquids the molecules are supposed to be always under the action of the forces due to

 neighbouring molecules throughout their course, but in gases the greater part of the

 path of each molecule is supposed to be sensibly rectilinear and beyond the sphere of

 sensible action of the neighbouring molecules.

 I propose in this paper to apply this theory to the explanation of various properties

 of gases, and to show that, besides accounting for the relations of pressure, density, and

 temperature in a single gas, it affords a mechanical explanation of the known chemical

 relation between the density of a gas and its equivalent weight, commonly called the

 Law of Equivalent Volumes. It also explains the diffusion of one gas through another,

 the internal friction of a gas, and the conduction of heat through gases.

 The opinion that.the observed properties of visible bodies apparently at rest are due

 to the action of invisible molecules in rapid motion is to be found in LUCRETIUS. In the

 exposition which he gives of the theories of DEMOCRITUS as modified by EpicuRus, he

 describes the invisible atoms as all moving downwards with equal velocities, which, at

 quite uncertain times and places, suffer an imperceptible change, just enough to allow

 of occasional collisions taking place between the atoms. These atoms he supposes to

 set small bodies in motion by an action of which we may form some conception by

 looking at the motes in a sunbeam. The language of LUCRETIUS must of course be

 interpreted according to the physical ideas of his age, but we need not wonder that it

 suggested to LE SAGE the fundamental conception of his theory of gases, as well as his

 doctrine of ultramundane corpuscles.

 Professor CLAUSIUS, to whom we owe the most extensive developments of the dynamical

 theory of gases, has given a list of authors who have adopted or given countenance to

 any theory of invisible particles in motion. Of these, DANIEL BERNOULLI, in the tenth

 section of his 'H ydrodynamics,' distinctly explains the pressure of air by the impact of

 its particles on the sides of the vessel containing it.

 CLAUSIUS also mentions a book entitled "IDeux Traites de Physique Mecanique, publi"s

 par PIERRE PREVOST, comme simple Editeur du premier et comme Auteur du second,"

 Geneve et Paris, 1818. The first memoir is by G. LE SAGE, who explains gravity by

 the impact of "ultramundane corpuscles" on bodies. These corpuscles also set in

 motion the particles of light and various Ethereal media, which in their turn act on the

 molecules of gases and keep up their motions. His theory of impact is faulty, but his

 explanation of the expansive force of gases is essentially the same as in the dynamical

 theory as it now stands. The second memoir, by PREVOST, contains new applications of

 the principles of LE SAGE to gases and to light. A more extensive application of the

 theory of moving molecules was made by HERAPATHt. Ills theory of the collisions of

 * POGGENDORFF'S ' Annalen,' Jan. 1862. Translated by G. C. FOSTER, B3.A., Phil. Mag. June 1862.

 t Mathematical Physics, &c., by JouN HERAPAT-H, IEsq. 2 vols. London: Whittaker & Co., and Herapath's
 Railway Journal Office, 1847.
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 MR. CLERK MAXWELL ON THE DYNAMICAL THEORY OF GASES. 51

 perfectly hard bodies, such as he supposes the molecules to be, is faulty, inasmuch as it

 makes the result of impact depend on the absolute motion of the bodies, so that by
 experiments on such hard bodies (if we could get them) we might determine the absolute

 direction and velocity of the motion of the earth*. This author, however, has applied

 his theory to the numerical results of experiment in many cases, and his speculations are

 always ingenious and often throw much real light on the questions treated. In parti-
 cular, the theory of temperature and pressure in gases and the theory of diffusion are
 clearly pointed out.

 Dr. JOULEt has also explained the pressure of gases by the impact of their molecules,
 and has calculated the velocity which they must have in order to produce the pressure

 observed in particular gases.

 It is to Professor CLAUSIUS, of Zurich, that we owe the most complete dynamical
 theory of gases. His other researches on the general dynamical theory of heat are well

 known, and his memoirs " On the kind of Motion which we call Hreat," are a complete
 exposition of the molecular theory adopted in this paper. After reading his investiga-
 tion4 of the distance described by each molecule between successive collisions, I pub-

 lished some propositions? on the motions and collisions of perfectly elastic spheres, and
 deduced several properties of gases, especially the law of equivalent volumes, and the
 nature of gaseous friction. I also gave a theory of diffusion of gases, which I now

 know to be erroneous, and there were several errors in my theory of the conduction
 of heat in gases which M. CLAUSIUS has pointed out in an elaborate memoir on that
 subject II.

 M. 0. E. MEYER? has also investigated the theory of internal friction on the hypo-
 thesis of hard elastic molecules.

 In the present paper I propose to consider the molecules of a gas, not as elastic spheres

 of definite radius, but as small bodies or groups of smaller molecules repelling one
 another with a force whose direction always passes very nearly through the centres of
 gravity of the molecules, and whose magnitude is represented very nearly by some
 function of the distance of the centres of gravity. I have made this modification of the

 theory in consequence of the results of my experiments on the viscosity of air at different

 temperatures, and I have deduced from these experiments that the repulsion is inversely

 as thefifth power of the distance.
 If we suppose an imaginary plane drawn through a vessel containing a great number

 of such molecules in motion, then a great many molecules will cross the plane in either
 direction. The excess of the mass of those which traverse the plane in the positive

 * Mathematical Physics, &c., p. 134.

 t Some Remarks on Heat and the Constitution of Elastic Fluids, Oct. 3, 1848.
 j Phil. Alag. Feb. 1859.

 ? Illustrations of the Dynamical Theory of Gases, Phil. Mag. 1860, January and July.

 POGGENDORFF, Jan. 1862; Phil. Mag. June 1862.
 ?f Ueber die innere Reibung der Gase (POGGaNDORFF, vol. cxxv. 1865).

 1 2
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 52 MR. CLERK MAXWELL ON THE DYNAMICAL THEORY OF GASES.

 direction over that of those which traverse it in the negative direction, gives a measure

 of the flow of gas through the plane in the positive direction.

 If the plane be made to move with such a velocity that there is no excess of flow of

 molecules in one direction through it, then the velocity of the plane is the mean velocity
 of the gas resolved normal to the plane.

 There will still be molecules moving in both directions through the plane, and carry-

 ing with them a certain amount of momentum into the portion of gas which lies on the

 other side of the plane.

 The quantity of momentum thus communicated to the gas on the other side of the

 plane during a unit of time is a measure of the force exerted on this gas by the rest.

 This force is called the pressure of the gas.

 If the velocities of the molecules moving in different directions were independent of

 one another, then the pressure at any point of the gas need not be the same in all direc-

 tions, and the pressure between two portions of gas separated by a plane need not be

 perpendicular to that plane. Hence, to account for the observed equality of pressure in

 all directions, we must suppose some cause equalizing the motion in all directions.

 This we find in the deflection of the path of one particle by another when they come near

 -one another. Since, however, this equalization of motion is not instantaneous, the pres-

 sures in all directions are perfectly equalized only in the case of a gas at rest, but when

 the gas is in a state of motion, the want of perfect equality in the pressures gives rise to

 the phenomena of viscosity or internal friction. The phenomena of viscosity in all

 bodies may be described, independently of hypothesis, as follows:-
 A distortion or strain of some kind, which we may call S, is produced in the body by

 displacement. A state of stress or elastic force which we may call F is thus excited.

 The relation between the stress and the strain may be written F=ES, where E is the
 coefficient of elasticity for that particular kind of strain. In a solid body free from vis-

 cosity, F will remain =ES, and

 dF EdS
 dt dt

 If, however, the body is viscous, F will not remain constant, but will tend to disappear

 at a rate depending on the value of F, and on the nature of the body. If we suppose

 this rate proportional to F, the equation may be written

 dF dS F
 wt- E W -Vr

 which will indicate the actual phenomena in an empirical manner. For if S be constant,

 F= ESe T

 showing that F gradually disappears, so that if the body is left to itself it gradually

 loses any internal stress, and the pressures are finally distributed as in a fluid at rest.
 dS c
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 MR. CLERK MAXWELL ON THE DYNAMICAL THEORY OF GASES. 53

 increases the displacement,

 F=ET-wd +Ce>T,

 showing that F tends to a constant value depending on the rate of displacement. The

 quantity ET, by which the rate of displacement must be multiplied to get the force, may
 be called the coefficient of viscosity. It is the product of a coefficient of elasticity, E,

 and a time T, which may be called the " time of relaxation" of the elastic force. In
 mobile fluids T is a very small fraction of a second, and E is not easily determined experi-

 mentally. In viscous solids T may be several hours or days, and then E is easily mea-

 sured. It is possible that in some bodies T may be a function of F, and this would
 account for the gradual untwisting of wires after being twisted beyond the limit of per-

 fect elasticity. For if T diminishes as F increases, the parts of the wire furthest from

 the axis will yield more rapidly than the parts near the axis during the twisting process,

 and when the twisting force is removed, the wire will at first untwist till there is equi-

 librium between the stresses in the inner and outer portions. These stresses will then

 undergo a gradual relaxation; but since the actual value of the stress is greater in the

 outer layers, it will have a more rapid rate of relaxation, so that the wire will go

 on gradually untwisting for some hours or days, owing to the stress on the interior

 portions maintaining itself longer than that of the outer parts. This phenomenon

 was observed by WEBER in silk fibres, by KoHLRAUSCH in glass fibres, and by myself in

 steel wires.

 In the case of a collection of moving molecules such as we suppose a gas to be, there

 is also a resistance to change of form, constituting what may be called the linear elasti-

 city, or " rigidity" of the gas, but this resistance gives way and diminishes at a rate de-

 pending on the amount of the force and on the nature of the gas.

 Suppose the molecules to be confined in a rectangular vessel with perfectly elastic

 sides, and that they have no action on one another, so that they never strike one another,

 or cause each other to deviate from their rectilinear paths. Then it can easily be shown

 that the pressures on the sides of the vessel due to the impacts of the molecules are per-

 fectly independent of each other, so that the mass of moving molecules will behave, not

 like a fluid, but like an elastic solid. Now suppose the pressures at first equal in the

 three directions perpendicular to the sides, and let the dimensions a, 6, c of the vessel

 be altered by small quantities, ka, Mb, 8c.
 Then if the original pressure in the direction of a was p, it will become

 I - 3a 8b a-

 Dr if there is no change of volume,

 -- 2-,
 P a

 showing that in this case there is a " longitudinal" elasticity of form of which the coeffi-
 cient is 2p. The coefficient of "IRigidity" is therefore =p.
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 54 MR. CLERK MAXWELL ON THE DYNAMICAL THEORY OP0 GASES.

 This rigidity, however, cannot be directly observed, because the molecules continually
 deflect each other from their rectilinear courses, and so equalize the pressure in all direc-

 tions. The rate at which this equalization takes place is great, but not infinite; and

 therefore there remains a certain inequality of pressure which constitutes the pheno-

 menon of viscosity.

 I have found by experiment that the coefficient of viscosity in a given gas is indepen-

 dent of the density, and proportional to the absolute temperature, so that if ET be the

 viscosity, ET oc c

 But E=p, therefore T, the time of relaxation, varies inversely as the density and is
 independent of the temperature. Hence the number of collisions producing a given de-
 flection which take place in unit of time is independent of the temperature, that is, of the

 velocity of the molecules, and is proportional to the number of molecules in unit of
 volume. If we suppose the molecules hard elastic bodies, the number of collisions of a
 given kind will be proportional to the velocity, but if we suppose them centres of force,

 the angle of deflection will be smaller when the velocity is greater; and if the force is
 inversely as the fifth power of the distance, the number of deflections of a given kind will

 be independent of the velocity. Hence I have adopted this law in making my calcu-

 lations.

 The effect of the mutual action of the molecules is not only to equalize the pressure

 in all directions, but, when molecules of different kinds are present, to communicate

 motion from the one kind to the other. I formerly showed that the final result in the
 case of hard elastic bodies is to cause the average vis viva of a molecule to be the same

 for all the different kinds of molecules. Now the pressure due to each molecule is pro-

 portional to its vis viva, hence the whole pressure due to a given number of molecules
 ill a given volume will be the same whatever the mass of the molecules, provided the

 molecules of different kinds are permitted freely to communicate motion to each other.

 When the flow of vis viva from the one kind of molecules to the other is zero, the

 temperature is said to be the same. Hence equal volumes of different gases at equal
 pressures and temperatures contain equal numbers of molecules.

 This result of the dynamical theory affords the explanation of the " law of equivalent

 volumes" in gases;

 We shall see that this result is true in the case of molecules acting as centres of force.

 A law of the same general character is probably to be found connecting the tempera-

 ratures of liquid and solid bodies with the energy possessed by their molecules, although

 our ignorance of the nature of the connexions between the molecules renders it difficult
 to enunciate the precise form of the law.

 The molecules of a gas in this theory are those portions of it which move about as a

 single body. These molecules may be mere points, or pure centres of force endowed

 with inertia, or the capacity of performing work while losing velocity. They may be
 systems of several such centres of force, bound together by their mutual actions, and in
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 MR. CLERK MAXWELL ON THE DYNAMICAL THEORY OF GASES. 5

 this case the different centres may either be separated, so as to form a group of points,

 or they may be actually coincident, so as to form one point.

 Finally, if necessary, we may suppose them to be small solid bodies of a determinate

 form; but in this case we must assume a new set of forces binding the parts of these

 small bodies together, and so introduce a molecular theory of the second order. The

 doctrines that all matter is extended, and that no two portions of matter can coincide in

 the same place, being deductions from our experiments with bodies sensible to us, have

 no application to the theory of molecules.

 The actual energy of a moving body consists of two parts, one due to the motion of its
 centre of gravity, and the other due to the motions of its parts relative to the centre of

 gravity. If the body is of invariable form, the motions of its parts relative to the centre

 of gravity consist entirely of rotation, but if the parts of the body are not rigidly con-

 nected, their motions may consist of oscillations of various kinds, as well as rotation of

 the whole bodv.

 The mutual interference of the molecules in their courses will cause their energy of

 motion to be distributed in a certain ratio between that due to the motion of the centre

 of gravity and that due to the rotation, or other internal motion. If the molecules are

 pure centres of force, there can be no energy of rotation, and the whole energy is reduced

 to that of translation; but in all other cases the whole energy of the molecule may be

 represented by ?Mv2P, where / is the ratio of the total energy to the energy of transla-

 tion. The ratio 3 will be different for every molecule, and will be different for the same
 molecule after every encounter with another molecule, but it will have an average value
 depending on the nature of the molecules, as has been shown by CLAUSIUS. The value

 of /3 can be determined if we know either of the specific heats of the gas, or the ratio
 between them.

 The method of investigation which I shall adopt in the following paper, is to deter-

 mine the mean values of the following functions of the velocity of all the molecules of a

 given kind within an element of volume:

 (a) the mean velocity resolved parallel to each of the coordinate axes;

 (/3) the mean values of functions of two dimensions of these component velocities;

 (r) the mean values of functions of three dimensions of these velocities.
 The rate of translation of the gas, whether by itself, or by diffusion through another

 gas, is given by ('a), the pressure of the gas on any plane, whether normal or tangential
 to the plane, is given by (/3), and the rate of conduction of heat through the gas is given

 by (y).
 I propose to determine the variations of these quantities, due, 1st, to the encounters

 of the molecules with others of the same system or of a different system; 2nd, to the

 action of external forces such as gravity; and 3rd, to the passage of molecules through

 the boundary of the element of volume.

 I shall then apply these calculations to the determination of the statical cases of the

 final distribution of two gases under the action of gravity, the equilibrium of temper

This content downloaded from 76.118.176.106 on Tue, 13 Dec 2016 21:31:57 UTC
All use subject to http://about.jstor.org/terms



 66 MR. CLERK MAXWELL ON THE DYNAMICAL THEORY OF GASES.

 rature between two gases, and the distribution of temperature in a vertical column.

 These results are independent of the law of force- between the molecules. I shall also

 consider the dynamical cases of diffusion, viscosity, and conduction of heat, which
 involve the law of force between the molecules.

 On the Mutual Action of Two Molecules.

 Let the masses of these molecules be M1, M2, and let their velocities resolved in three

 directions at right angles to each other be 4, 3, ' and 025 n2, 2 The components- of

 the velocity of the centre of gravity of the two molecules will be

 1M? + FUMQ? n1Ml + nIMq I1M1? + 2M2
 M+?M2 mlM +M2 M' +M2

 The motion of the centre of gravity will not be altered by the mutual action of the

 molecules, of whatever nature that action may be. We may therefore take the centre

 of gravity as the origin of a system of coordinates moving parallel to itself with uniform
 velocity, and consider the alteration of the motion of each particle with reference to this

 point as origin.

 If we regard the molecules. as simple centres of force, then each molecule will describe

 a plane curve about this centre of gravity, and the two curves will be similar to each

 other and symmetrical with respect to the line of apses. If the molecules move with

 sufficient velocity to carry them out of the sphere of their mutual action, their orbits

 will each have a pair of asymptotes inclined at an angle 2 -0 to the line of apses. The

 asymptotes of the orbit of Ml will be at a distance b& from the centre of gravity, and
 those of M2 at a distance b2, where

 Ml}= Mwab2

 The distance between two parallel asymptotes, one in each orbit, will be

 b=bl+b2'

 If! while the two molecules are still beyond each other's action, we draw a straight

 line through M, in the direction of the relative velocity of Ml to M2, and draw from. Ma
 a perpendicular to this line, the length of this perpendicular will be b, and the plane

 including b and the direction of relative motion will be the plane of the orbits about

 the centre of gravity.

 When, after their mutual action and deflection, the molecules have again reached a

 distance such that there is no sensible action between them, each will be moving with

 the same velocity relative to the centre of gravity that it had before the mutual action,
 but the direction of this relative velocity will be turned through an angle 2d in the plane
 of the orbit.

 The angle 0 is a function of the relative velocity of the molecules and of h, the form
 of the fuiction depending on the nature of the action between the molecules.

 If we suppose the molecules to be bodies, or systems of bodies, capable of rotation,
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 MR. CLERK MAXWELL ON THE DYNAMICAL THEORY OF GASES. 57

 internal vibration, or any form of energy other than simple motion of translation, these

 results will be modified. The value of d and the final velocities of the molecules will

 depend on the amount of internal energy in each molecule before the encounter, and

 on the particular form of that energy at every instant during the mutual action. We

 have no means of determining such intricate actions in the present state of our know-

 ledge of molecules, so that we must content ourselves with the assumption that the value

 of 0 is, on an average, the same as for pure centres of force, and that the final velocities
 differ from the initial velocities only by quantities which may in each collision be

 neglected, although in a great many encounters the energy of translation and the internal
 energy of the molecules arrive, by repeated small exchanges, at a final ratio, which we

 shall suppose to be that of 1 to 3-1.

 We may now determine the final velocity of MI, after it has passed beyond the sphere
 of mutual action between itself and M2.

 Let V be the velocity of MI relative to MI, then the components of V are

 El- 21 41 -29 a} - ?2*

 The plane of the orbit is that containing V and 6. Let this plane be inclined p to a
 plane containing V and parallel to the axis of x; then, since the direction of V is turned

 round an angle 20 in the plane of the orbit, while its magnitude remains the same, we

 may find the value of 4j after the encounter. Calling it ',

 M - {E 2- ,)2 sin2 i+ V(42_ 1)2 2sin 20 cos } .

 There will be similar expressions for the components of the final velocity of M, in the

 other coordinate directions.

 If we know the initial positions and velocities of MI and M2 we can determine V, the
 velocity of MI relative to M2; 6 the shortest distance between M, and MI2 if they had
 continued to move with uniform velocity in straight lines; and @ the angle which deter-

 mines the plane in which V and b lie. From V and b we can determine 0, if we know

 the law of force, so that the problem is solved in the case of two molecules.

 When we pass from this case to that of two systems of moving molecules, we shall

 suppose that the time during which a molecule is beyond the action of other molecules

 is so great compared with the time during which it is deflected by that action, that we
 may neglect both the time and the distance described by the molecules during the

 encounter, as compared with the time and the distance described while the molecules

 are free from disturbing force. We may also neglect those cases in which three or more

 molecules are within each other's sphleres of action at the samle instant.

 On the Mutual Action of Two Systems of f-oving Molecules.

 Let the number of molecules of the first kind in unit of volume be N1, the mass of each
 being MI. The velocities of these molecules will in general be different both in magni-
 tude and direction. Let us select those molecules the components of whose velocities

 MDCCCLXVII.I
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 lie between

 al and E1+d1, 1 and '1+d/1, d : and + dil,,

 and let the number of these molecules be dN. The velocities of these molecules will

 be very nearly equal and parallel.

 On account of the mutual actions of the molecules, the number of molecules which at

 a given instant have velocities within given limits will be definite, so that

 dN, =fIJ;71()d1ldndj.. (2)

 We shall consider the form of this function afterwards.

 Let the number of molecules of the second kind in unit of volume be N2, and let dN2

 of these have velocities between t2 and + dt2, 42 and dd +.2 , Ad and ?2+ d&,, where

 dN2 =f j2 42 )dt2dn#2d~

 The velocity of any of the dN, molecules of the first system relative to the diN2 mole-
 cules of the second system is V, and each molecule M, will in the time Ut describe a rela-

 tive path Y Ut amnolig the molecules of the second system. Conceive a space bounded by

 the followingi surfaces. Let tw o cylindrical surfaces have the common axis VYU and

 radii b and b+db. Let two planes be drawn through the extremities of the line VUt
 perpendicular to it. Finally,- let txco planes be drawn through VYt making angles 9 and
 p?dp with a plane through V parallel to the axis of x. Then the volume included
 between the four planes and the two cylindric surfaces will be WVdbdkt.

 If this volume includes one of the molecules M2, then during the time Ut there will be

 an encounter between ill and 1M2, in which b is between b and b+db, and p between @
 and o+dp.

 Since there are dN, molecules similar to Af1 and dN2 similar to M2 in unit of volume,
 the whole number of encounters of the given kind between the two systems will be

 VbdbdpbtdNldN2.

 Now let Q be any property of the molecule M1, such as its velocity in a given direction,
 the square or cube of that velocity or any other property of the molecule which is altered

 in a known manner by an encounter of the given kind, so that Q becomes Q' after the

 encounter, then during the time Ut a certain number of the molecules of the first kind

 have Q changed to Q', while the remainder retain the original value of Q, so that

 oQdN, = (Q -Q)Vbdbd'PtdN1dN2,
 or

 Q)VbdbdpdN'dN2 * ()
 aQdN1

 Here refers to the alteration in the sum of the values of Q for the dN1 molecules,

 due to their encounters of the given kind with the dN, molecules of the second sort.

 In order to determine the value of -QN1 the rate of alteration of Q among all the

 molecules of the first kind, we wlust performu the following integrations:
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 M1R. CLERK MAXWELL ON TiE DYNAIMICAL THEORY OF GASES. 9

 1st, with respect to ; from p=O to p=2-r.
 2nd, with respect to b from b=Q to b=x . These operations will give the results off

 the encounters of every kind between the dNj and dN2 molecules.

 3rd, with respect to dN2, orJ2
 4th, with respect to dN,, orf1(41;71j)dtjdn1d~.
 These operations require in general a knowledgue of the forms off and f.

 1st. Integration with respect to @.

 Since the action between the molecules is the same in whatever plane it takes place.,
 [I2vr

 we shall first determine the value of) (Q'-Q)dp in several cases, making Q some
 O

 function of 4, , and .

 (az) Let Q=t1 and Q'=4, then

 ( 'r - Jdp M2 (42- ,)4r sin2 0. (4)

 (3) Let Q = and Q = w27

 j7 M1 )d= (M,+ M2)2 {(-I)(MlIl + M242)81 sin2 d+ M2((42- _1)2+ (r2- _ 2(02I)2)7 sr n220}. (5)

 By transformation of coordinates we may derive from this

 f5 (01itl (M, +M)2{(1202-2-MlIl7l +! (M-M2)(t42+t241) sin2 0-3M2(,2-,1)(72-21)} (6)

 with similar, expressions for the other quadratic functions of $ 4,

 (r) Let Q= 1(t2+42+ n +2), and QI = (+' + ?); then putting 2 + 42 + +2=
 e2+flli2 + r2=U, 42+42+r2=V2, and (42_I1)2 + )2+( _ )2=V2, we find
 12i =;71 -2MV1~4 ~ 2M 2 sin2 { -)Y1+2t1(U - Y} I

 + (M- N2j7j) (87sin2 --3_r sin2 20)2(U2-V2)(U-V,) I . .

 +O (MMI M-)(8% sin2 0-d27sin 2O1V I

 + (-+2jv[k (Sr sin2 d-23r sin2 20)2(42-j) V2. j

 These are the principal functions of w, , ' hose changes we shall have to consider; we
 shall indicate them by the symbols ac, 3, or r, according as the function of the velocity
 is of one, two, or three dimensions.

 2nd. Integration with respect to b.

 We have next to multiply these expressions by 6db, and to integrate with respect to
 b from b=O to b=co. We must bear in mind that 0 is a function of b and V, and can
 only be determin~ed when the law of force is known. In the expressions which we have

 I 2
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 60 MR. CLERK MAXWELL ON THE DYNAMICAL THEORY OF GASES.

 to deal with, 0 occurs under two forms only, namely, sin20 and sin2 20. If, therefore, we
 can find the values of

 Ad ~~~~~~~~~~~~~~~00

 B,= 4rbdb sin20, and B.= xbdb sin220, . . . . . (8)

 we can integrate all the expressions with respect to b.

 B, and B2 will be functions of V only, the form of which we can determine only in
 particular cases, after we have found 0 as a function of b and V.

 betermination of 0 for certain laws of Force.

 Let us assume that the force between the molecules M1 and M2 is repulsive and varies

 inversely as the nth power of the distance between them, the value of the moving force
 at distance unity being K, then we find by the equation of central orbits,

 dx.9 2 SJov/l1. ,(xJ--,***..

 where x=-, or the ratio of b to the distance of the molecules at a given time: x is there-

 fore a numerical quantity; a is also a numerical quantity and is given by the equation

 (V12xAt III -l * ' ( )

 a~~.. (I (0)
 The limits of integration are x= and x,=x, where x' is the least positive root of the

 equation
 0 X\ X-1 1 _x2_ (_J = . ..... . (11)

 It is evident that 0 is ae function of ca and n, and when n is known 0 may be expressed
 as a function of cc only.

 Also
 2

 bdb (K(M1 ?M a) 'ciddc; (12)

 so that if we put

 Al==l 4zdo sin20, A2J od sin22d.. . (13)

 A, and A2 will be definite numerical quantities which may be ascertained when n is given,
 2

 and B, and B2 may be found by multiplying Al and A2 by (K(jM' )) V8'

 Before integrating further we have to multiply by V, so that the form in which V

 will enter into the expressions which have to be integrated with respect to dN, and d.N2
 Till be

 n-5

 Vfl-l

 It will be shown that we have reason from experiments on the viscosity of gases to
 believe that n= 5. In this case V will disappear from the expressions of the form (3),
 and they wvill be capable of immediate integration with respect to dN1i and dN2.
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 If we assume n=5 and put c44=2 cot2P and x=-V1-tanj2 cos ,

 Q S~s/coS 2@S VIS-Sil2, sinfP . (14)
 -V'cos 2p Fant l

 where FM in is the complete elliptic function of the first kind and is given in LEGENDRE'S
 Tables. I have computed the following Table of the distance of the asymptotes, the
 distance of the apse, the value of 0, and of the quantities whose summation leads to A,
 and A2.

 E- 1 b | Distance 0 s 0 sin2 20
 b. of apse. 0. sin2 2 ~ sin2 20

 0 0 infinite infinite 0 6 0 0
 5 0 2381 2391 0 31 '00270 *01079
 I0 0 1658 1684 1 53 *01464 '03689
 15 0 1316 1366 4 47 *02781 '11048
 20 0 1092 1172 8 45 *05601 '21885
 25 0 916 1036 14 15 '10325 '38799
 30 0 760 931 21 42 *18228 '6.2942
 35 0 603 845 31 59 '31772 '71433
 40 0 420 772 47 20 '55749 1'02427
 41 0 374 7058 51 32 *62515 *96763
 42 0 324 745 56 26 '70197 *85838
 43 0 264 732 62 22 '78872 *67868
 44 0 187 719 70 18 '88745 '40338
 44 30 132 713 76 1 '94190 '21999
 45 0 0 707 90 0 100000 '00000

 Ai=S47*-cdc sin2 -=2-6590. (15)

 A2=Sjrcda sin' 2d=1-3682. (16)

 The paths described by molecules about a centre of K
 force S, repelling inversely as the fifth power of the
 distance, are given in the figure.

 The molecules are supposed to be originally mo ring G
 with equal velocities in parallel paths, and the way in.

 which their deflections depend on the distance of the path d S
 from S is shown by the different curves in the figure.

 3rd. Integration with respect to dNa.

 We have now to integrate expressions involving various functions of 7) a, arnd V
 with respect to all the molecules of the second sort. Wie mnay write the exprzessionl to
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 be integrated

 where Q is -some function of $ , ;, &c., already determined, and f2 is the function
 which indicates the distribution of velocity among the molecules of the second kind.

 In the case in which nX5, V disappears, and we may write the result of integration

 QN2,

 where Q is the mean value of Q for all the molecules of the second kind, and N2 is the

 number of those molecules.

 If, however, n is not equal to 5, so that V does not disappear, we should require to

 know the form of the functionfA before we could proceed further with the integration.
 The only case in which I have determined the form of this function is that of one or

 more kinds of molecules which have by their continual encounters brought about a

 distribution of velocity such that the number of molecules whose velocity lies within

 given limits remains constant. In the Philosophical Magazine for January 1860, 1 have

 given an investigation of this case, founded on the assumption that the probability of a.

 molecule having a velocity resolved parallel to x lying between given limits is not ill any

 way affected by the knowledge that the molecule has a given velocity resolved parallel

 to y. As this assumption may appear precarious, I shall now determine the form of the
 function in a different manner.

 On the Final J)istribntion of Velocity among the Molecules of Two Systems acting on one
 another according to any Law of Force.

 From a given point 0 let lines be drawn representing inl direction and A 13

 magnitude the velocities of every molecule of either kind in unit of

 volume. The extremities of these lines will be distributed over space

 in such a way that if an element of volume dY be taken anywhere, the

 number of such lines which will terminate within dVwill be f(r)dV, o
 where r is the distance of dY from 0.

 Let OA-a be the velocity of a molecule of the first kind, and OBzzb that of a mole-
 cule of the second kind before they encounter one another, then BA will be the velocity

 of A relative to B; and if we divide AB in G inversely as the masses of the molecules,
 and join OG, OG will be the velocity of the centre of gravity of the two molecules.

 Nov let OA'=a' and OB'=b' be the velocities of the two molecules after the
 encounter, GA=GA' and GB=GB', and A'GB' is a straight line not necessarily in the
 plane of OAB. Also AGA'=2d is the angle through which the relative velocity is
 turned in the encounter in question. The relative motion of the molecules is com-

 pletely defined if we know BA the relative velocity before the encounter, 20 the angle

 through which BA is turned during the encounter, and 4p the angle which defines the
 direction of the plane in which BA and B'A' lie. All encounters in which the magni-
 tude and direction ofl BA, and also D- and Id lie within certain almost contiguous limits,
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 we shall class as encounters of the given kind. The number of such encounters in unit
 of time will be

 n n2Fde.(17)

 where n, and n, are the numbers of molecules of each kind under consideration, and F
 is a function of the relative velocity and of the angle 0, and de depends on the limits of

 variation within which we class encounters as of the same kind.

 Now let A describe the boundary of an element of volume dV while AB and AB'

 move- parallel to themselves, then B, A', and B' will also describe equal and similar
 elements of volume.

 The number of molecules of the first kind, the lines representing the velocities of

 which terminate in the: element dV at A, will be

 nj=f,(a)dV. (18)
 The number of molecules of the second kind which have velocities corresponding to OB

 will be
 n2=f2(b)dV;.(19)

 and the number of encounters of the given kind between these two sets of molecules

 willbe

 f1(a)f2(b)dV2Fde. (2t0)
 The lines representing the velocities of these molecules after encounters of the given

 kind will terminate within elements of volume at A' and B', each equal to dV.
 In like manner we should find for the number of encounters between molecules

 whose original velocities corresponded to elements equal to dV described about A' and

 B', and whose subsequent velocities correspond to elements equal to dV described about

 A and B,
 f,(a')f2(b')dV2F'de. (21)

 where F' is the same function of B'A' and A'GA that F is of BA and AGA'. F is there-

 fore equal to F'.

 When the number of pairs of molecules which change their velocities front OA, OB

 to OA' OB' is equal to the number which change from OA', OB' to OA, GB, then the

 final distribution of velocity will be obtained, which will not be altered by subsequent

 exchanges. This will be the case when

 f,(a)f2(b) =f1(a')f(b') . (22)
 Now the only relation between a, b and a', b' is

 Mlae+M2b2a= Mla!2 + MSb' . (23)
 Whence we obtain

 fl(a)=C e , f2(b) C2e *(24)
 where

 Ml0~2: =M2f(32. . * . * . * * . * . . (25)

 Byintegrating jjCle dt dr d', and equating the result to N., we obtain the

 value o# Cl. If, therefore, the distrsibultion of velocities among N, molecules is sucsh that
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 the number of molecules whose component velocities are between t and +d', n and
 + d Ze, and '- and ++d' is

 dNj_ -3 'e d'2 -dr da c j .,.. (2 6)

 then this distribution of velocities will not be altered by the exchange of velocities among
 the molecules by their mutual action.

 This is therefore a possible form of the final distribution of velocities. It is also the
 only form; for if there were any other, the exchange between velocities represented by

 OA and OA' would not be equal. Suppose that the number of molecules having velo-
 city OA! increases at the expense of OA. Then since the total number of molecules

 corresponding to OA' remains constant, OA' must communicate as many to OA", and so
 on till they return to OA.

 Hence if OA, OA', OA", &c. be a series of velocities, there will be a tendency of each
 molecule to assume the velocities GA, OA', OA", &c. in order, returning to OA. Now
 it is impossible to assign a reason why the successive velocities of a molecule should be

 arranged in this. cycle, rather than in the reverse order. If, therefore, the direct exchange
 between OA and OA' is not equal, the equality cannot be preserved by exchange in a
 cycle. Hence the direct exchange between OA and OA' is equal, and the distribution
 we have determined is the only one possible.

 This final distribution of velocity is attained only when the molecules have had a great

 number of encounters, but the great rapidity with which the encounters succeed each
 other is such that in all motions and changes of the gaseous system except the most
 violent the form of the distribution of velocity is only slightly changed.

 When the gas moves in mass, the velocities now determined are compounded with the

 motion of translation of the gas.

 When the differential elements of the gas are changing their figure, being compressed

 or extended along certain axes, the values of the mean square of the velocity will be
 different in different directions. It is probable that the form of the function will then be

 f,(toU)=-C->e (,12 ,8a ,4)7. , , i, * * (27)

 where Ad S ty are slightly different. I have not, however, attempted to investigate the
 exact distribution of velocities in this case, as the theory of motion of gases does not

 require it.

 When one gas is diffusing through another, or when heat is being conducted through
 a gas, the distribution of velocities will be different in the positive and negative directions,

 instead of being symmetrical, as in the case we have considered. The want of symmetry,

 however, may be treated as very small in most actual cases.
 The principal conclusions which we may draw from this investigation are as follows.

 Calling ay the modulus of velocity,

 1ist. Thle mean velocity is e-as-2s. . . * * * (2S
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 2nd. The mean square of the velocity is v23 2 . . (29)

 3rd. The mean value of 2 2 (30)
 4th. The mean value of t4 is =_aa4. .(31)

 5th. The mean value of 282 is 4 . . (32)
 6th. When there are two systems of molecules

 Mlt%2 =M42.M2(33)
 whence

 M~v-M~v2i. (34)

 or the mean vis viva of a molecule will be the same in each system. This is a very

 important result in the theory of gases, and it is independent of the nature of the action

 between the molecules, as are all the other results relating to the final distribution of

 velocities. We shall find that it leads to the law of gases known as that of Equivalent

 Volumes.

 Variation of Functions of the Velocity due to encounters between the Molecules.

 We may now proceed to write down the values of 8 in the different cases. We shall

 indicate the mean value of any quantity for all the molecules of one kind by placing a

 bar over the symbol which represents that quantity for any particular molecule, but in

 expressions where all such quantities are to be taken at their mean values, we shall, for
 convenience, omit the bar. We shall use the symbols bi and t2 to indicate the effect

 produced by molecules of the first kind and second kind respectively, and 83 to indicate

 the effect of external forces. We shall also confine ourselves to the case in which n=5,

 since it is not only free from mathematical difficulty, but is the only case which is con-

 sistentwith the laws of viscosity of gases.

 In this case V disappears, and we have for the effect of the second system or the first,

 at =N2 (M1?M2)) Af' (Q'-Q)dp.(35)

 where the functions of i, a, ' in S(Q'-Q) dp must be put equal to their mean values for
 all the molecules, and Al or A2 must be put for A according as sin2 0 or sin2 20 occurs in

 the expressions in equations (4), (5), (6), (7). We thus obtain

 ( l~) _= (M KM21?M2)XN2MN A(2 2- 1) (36) (??)at-MIM2(Ml+'M2)J -IM....*......(

 a2, M K \ N M2Q
 (f3) st I~lM2(M +M2)} Ml+M2 (37)

 { 2A,(52- )J(M1E + M2e2) + AX2(42 _71 + -C2 -?1 _ 202 ,1)1};
 8 glxl / K \~1 N M2 2 2

 at MIM2(Ml +M2) M fl + M2 (8 = ;{~~~~~~~~~~~~~~~~~(38)
 { A (2M2/2r2 2M,1Y12, + (M, - M2)(A 2+ Aim1))3 A2M2(;-01(8-.)}I

 MDCCCLXVII. K
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 (Y,) I (Mt k('? + M2)) N2M2 {A2 (2- IV +2a1(U--Vi))

 M ~~~~~~~~(3 9) +1 M8- 12AI 2A2)l 2(2-)U )
 +M2
 M 2

 +( )2 (2A1,2A2)2(~2_ 1)V2

 using the symbol 82 to indicate variations arising from the action of molecules of the

 second system.

 These are the values of the rate of variation of the mean values of 4 2 41 w, and

 , V], for the molecules of the first kind due to their encounters with molecules of the
 second kind. In all of them we must multiply up all functions of 4, I, A, and take the

 mean values of the products so found. As this has to be done for all such functions, I

 have omitted the bar over each function in these expressions.

 To find the rate of variation due to the encounters among the particles of the same

 system, we have only to alter the suffix (2) into (1) throughout, and to change K, the
 coefficient of the force between M1 and MS into K1, that of the force between two mole-

 cules of the first system. We thus find

 (Me) Bg' =0; .(40)

 (i) d~ l= ( 4M MNlA'~2{82-2 '2( -241.)}; (41)

 7t (2M)M1N1A.23 {l7.7 3 -{ (42)

 (y) BILL= 02X3) M- 1 .(43)

 These quantities must be added to those in equations (36) to (39) in order to get the

 rate of variation in the molecules of the first kind due to their encounters with mole-

 cules of both systems. When there is only one kind of molecules, the latter equations

 give the rates of variation at once.

 On the Action of External Forces on a Systemn of Moving Molecules.

 We shall suppose the external force to be like the force of gravity, producing equal

 acceleration on all the molecules. Let the components of the force in the three coor-
 dinate directions be X, Y. Z. Then we have by dynamics for the variations of 4, $2, and

 -V2 due to this cause,

 (.. * (44)
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 3. 2 -2X; . (45)

 a3t
 =nX+tY;. . (46)

 (r) 8t -2=(0X+nY+'Z)+XV2;.(47)
 where 3 refers to variations due to the action of external forces.

 On the Total rate of changne of the different frnctions of the velocity of the molecules
 qf the first system arising from their encounters with molecules of both systems and
 from the action of external forces.

 To find the total rate of change arising from these causes, we must add

 a Q) a2sQ and a3sQ
 VT t at

 the quantities already found. We shall find it, however, most convenient in the re-

 mainder of this investigation to introduce a change in the notation, and to substitute for

 ;, and A, u+t, v+1, and w+, (48)
 where u, v, and w are so chosen that they are the mean values of the components of the
 velocity of all molecules of the same system in the immediate neighbourhood of a given

 point. We shall also write
 MIN 1=?, M2N2=2. (49)

 where el and g2 are the densities of the two systems of molecules, that is, the mass in
 unit of volume. We shall also write,

 ( )= (M0MO6 M -) k= and (-k - 50) \2;M1/ ~1 Vl2(Ml + M2)/ 2 3

 glo 2 kl, k2, and k are quantities the absolute values of which can be deduced from expe-
 riment. We have not as yet experimental data for determining M, N, or K.

 We thus find for the rate of change of the various functions of the velocity,

 (az) oI =kAg2(u2-_u1)+X; .(51)

 8~~ __2 2

 +k~2g Ml1M2{2A,(u2-.ul)?A2(v2-+lAt W2-Wl- 22u)} L . (52)

 +Ml'i + M2{2AI(M2 2 M1t)+A2M22(21+ ? - 2+ 2? 22r. 20)}
 also

 __ M~~~2 2 -3 -2U ( _ I) -at -33A2?1S 1+e2- M, + 1M(2A, - 3A2)(u2- u1)(v2- v)(

 + l>g"2 {2A(M2 2MM11,) - 3A2M2(tr, +n242)}. J
 Kx2
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 (y) As the expressions for the variation of functions of three dimensions in mixed
 media are complicated, and as we shall not have occasion to use them, I shall give the

 case of a single medium,

 st(43 + 14 12 + t, C,) =-1gA( 8 + 0 1 2) + X( 342 + 42+a Y a +2Z1A (1 1 - 2( 1 3U+ (3$ I + ~2) -v2Y~jj+ 2Z~1~1. (54)

 Theory of a ledium composed of Movinyg Molecules.

 We shall suppose the position of every moving molecule referred to three rectangular

 axes, and that the component velocities of any one of them, resolved in the directions of

 x, y, z, are
 tb+t, V+n, W+r,

 where u, v, w are the components of the mean velocity of all the molecules which are

 at a given instant in a given element of volume, and 4, t, t are the components of the

 relative velocity of one of these molecules with respect to the mean velocity.
 The quantities U, v, W may be treated as functions of x, y, z, and t, in which case differ-

 entiation will be expressed by the symbol d. The quantities 4, a, ', being different for

 every molecule, must be regarded as functions of t for each molecule. Their variation

 with respect to t will be indicated by the symbol I.

 The mean values of 42 and other functions of 4, a, X for all the molecules in the ele-

 ment of volume may, however, be treated as functions of x,y, z, and t.

 If we consider an element of volume which always moves with the velocities u, v, w,
 we shall find, that it does not always consist of the same molecules, because molecules

 are continually passing through its boundary. We cannot therefore treat it as a mass

 moving with the velocity u, v, w, as is done in hydrodynamics, but we must consider

 separately the motion of each molecule. When we have occasion to consider the vari-

 ation of the properties of this element during its motion as a function of the time we

 shall use the symbol a.

 We shall call the velocities u, v, w the velocities of translation of the medium, and

 ;, a the velocities of agitation of the molecules.

 Let the number of molecules in the element dx dy dz be N dx dy dz, then we may call
 N the number of molecules in unit of volume. If M is the mass of each molecule, and

 e the density of the element, then

 MN=e. (55)

 Transference of Quantities across a Plane Area.

 We must next consider the molecules which pass through a given plane of unit area in

 unit of time, and determine the quantity of matter, of momentum of heat, &c. which

 is transferred from the negative to the positive side of this plane in unit of time.

 We shall first divide the N molecules in unit of volume into classes according to the

 value of I, a, and X for each, and we shall suppose that the number of molecules in unit

 of volume whose velocity in the direction of x lies between e and 5+ d, 7 and ;7 + dr,
 ? and '+dX is dN, dN will then be a function of the component velocities, the sum of
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 which being taken for all the molecules will give N the total number of molecules.
 The most, probable form of this function for a medium in its state of equilibrium is

 N 42+X2+;2

 dN= ,, e a2 de dn do.(56)

 In the present investigation we do not require to know the form of this function.

 Now let us consider a plane of unit area perpendicular to x moving with a velocity
 of which the part resolved parallel to x is U'. The velocity of the plane relative to the

 molecules we have been considering is u'- (u+F), and since there are dN of these mole-
 cules in unit of volume it will overtake

 (u' - (u+a))dN

 such molecules in unit of time, and the number of such molecules passing from the
 negative to the positive side of the plane, will be

 (u+~-u')dN.
 Now let Q be any property belonging to the molecule, such as its mass, momentum, vis

 viva, &c., which it carries with it across the plane, Q being supposed a function of a or of

 I, a, and A, or to vary in any way from one molecule to another, provided it be the same

 for the selected molecules whose number is dN, then the quantity of Q transferred
 across the plane in the positive direction in unit of time is

 S(M - u'+ M)QdN,
 or

 (a-W)SQdN+S QdN.. (57)

 If we put QN for SQdN, and EQN for SAQdN, then we may call Q the mean value of
 Q, and AQ the mean value of AQ, for all the particles in the element of volume, and we
 may write the expression for the quantity of Q which crosses the plane in unit of time

 (u-u')QN+{QN. . . . . . . . . . .(58)

 ,(a) Transfrrence of Matter across a Plane- Velocity of the Fluid.

 To determine the quantity of matter which crosses the plane, make Q equal to M

 the mass of each molecule; then, since M is the same for all molecules of the same kind,

 M==M; and since the mean value of a is zero, the expression is reduced to

 (u - u')MN = (u- u')6. (59)
 -If u=U', or if the plane moves with velocity u, the whole excess of matter transferred

 across the plane is zero; the velocity of the fluid may therefore be defined as the velo-

 city whose components are u, v, w.

 (f) Transference of Momentum across a Plane-Systemn of Pressures at anypoint
 of the Fluid.

 The momentum of any one molecule in the direction of x is M(u+Z). Substituting

 *this for Q. we get- for the quantity of momentum transferred across the plane in the
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 positive direction

 (u - d)u + ee. . . . . . . . . . . .(60)
 If the plane moves with the velocity u, this expression is reduced to 2, where 2 repre-

 sents the mean value of g2.
 This is the whole momentum in the direction of x of the molecules projected from the

 negative to the positive side of the plane in unit of time. The mechanical action

 between the parts of the medium on opposite sides of the plane consists partly of the
 momentum thus transferred, and partly of the direct attractions or repulsions between
 molecules on opposite sides of the plane. The latter part of the action must be very
 small in gases, so that we may consider the pressure between the parts of the medium
 on opposite sides of the plane as entirely due to the constant bombardment kept up

 between them. There will also be a transference of momentum in the directions of y and
 Z across the same plane,

 (It - Ul) ve + gig, . . . . . . . . . . (61)
 and

 (62)

 where En and Ad represent the mean values of these products.

 If the plane moves with the mean velocity u of the fluid, the total force exerted on the

 medium on the positive side by the projection of molecules into it from the negative side
 will be

 a normal pressure a in the direction of x,

 a tangential pressure g in the direction of y,

 and a tangential pressure bilein the direction of z.

 If X, Y, Z are the components of the pressure on unit of area of a plane whose
 direction cosines are , m), n,

 Y~Sg~n~~ftg > .vv. (63)

 Z =l + mn 2+n
 When a gas is not in a state of violent motion the pressures in all directions are nearly

 equal, in which case, if we put

 2 + +.2.=3.. . . . * * (64)

 the quantityp will represent the mean pressure at a given point, and 02? n2, and 2 will
 differ from p only by small quantities; a, 0, and dn? will then be also small quan-
 tities with respect to p.

 Energy in the Mediun-Actual Heat.

 The actual energy of any molecule depends partly on the velocity of its centre of
 gravity, and partly on its rotation or other internal motion with respect to the centre of
 gravity. It may be written

 1 1{ (t6?+)2?+(v + +) d(aw+ )2}+ 2EM,.b(65)
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 where UEM is the internal part of the energy of the molecule, the form of which is at
 present unknown. Summing for all the molecules in unit of volume, the energy is

 (t2+.2+W2)?+ (f2,+.2+2)+ l . . . * (66)
 The first term gives the energy due to the motion of translation of the medium in

 mass, the second that due to the agitation of the centres of gravity of the molecules, and

 the third that due to the internal motion of the parts of each molecule.

 If we assume with CLAUSIUS that the ratio of the mean energy of internal motion to

 that of agitation tends continually towards a definite value ((3-1), we may conclude that,

 except in very violent disturbances, this ratio is always preserved, so that

 E~p-- 3_1)(2+42+ C2).(67)
 The total energy of the invisible agitation in unit of volume will then be

 j.(t.2+.2+ 2)g .(68)
 or

 hi~p. . . . . . . . .(69)
 This energy being in the form of invisible agitation, may be called the total heat in

 the unit of volume of the medium.

 (y) Transference of Erierqy across a Plane-Conduction of Heat.
 Putting

 Qz=:L(02+72+4'2)M, and =d, .(70)
 we find for the quantity of heat carried over the unit of area by conduction in unit of time

 _iE 10(03+tt424 0X2)Ss . . . . . . . . . (71)

 where 03, &c. indicate the mean values of ~3, &c. They are always small quantities.

 On the Rate of Variation of Q in an Elemnent of' Volume, Q being any property of the
 Molecules in that Element.

 Let Q be the value of the quantity for any particular molecule, and Q the mean value

 of Q for all the molecules of the same kind within the element.

 The quantity Q may vary from two causes. The molecules within the element may

 by their mutual action or by the action of external forces produce an alteration of Q, or

 molecules may pass into the element and out of it, and so cause an increase or diminution
 of the value of Q within it. If we employ the symbol z to denote the variation of Q

 due to actions of the first kind on the individual molecules, and the symbol a to denote

 the actual variation of Q in an element moving with the mean velocity of the system of

 molecules under consideration, then by the ordinary investigation of the increase or

 diminution of matter in an element of volume as contained in treatises on Hydrodynamics,

 etN~QN '{(ub-u')QN+b QN} } . . . (72)

 -d~t~-v') + dQN} fd{(ww')QN + QN},|
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 72 MR. CLERK MAXWELL ON THE DYNAMICAL THEORY OF GASES.

 where the last three terms are derived from equation (59) and two similar equations, and

 denote the quantity of Q which flows out of an element of volume, that element moving

 with the velocities ml, v', w'. If we perform the differentiations and then make u'=u,

 Vl=v, and w'=w, then the variation will be that in an element which moves with the
 actual mean velocity of the system of molecules, and the equation becomes

 a +QN(4+Vd) (QN) + d(nQN) + a (~QN)=- N. ..(73) d dy dz x

 Equation of Continuity.

 Put Q=M the mass of a molecule; M is unalterable, and we have, putting MN=,e.
 du dA dw

 .s T =09.(74) at+ +g47+d+ W-a) + . ..(4
 which is the ordinary equation of continuity in hydrodynamics, the element being sup-

 posed to move with the velocity of the fluid. Combining this equation with that from

 which it was obtained, we find

 x Q+d(MEN) + d(nQN) jz(QN= I ~t dxy(Vt
 a more convenient form of the general equation.

 Equations of Motion (c).

 To obtain the Equation of Motion in the direction of x, put Q=M,(,+m,), the mo-
 mentum of a molecule in the direction of x.

 We obtain the value of q from equation (51), and the equation may be written

 - 'I+_ (?2) + j- (1) + z (S 1) =kAl 2(u2- l) + X... (76)
 In this equation the first term denotes the efficient force per unit of volume, the

 second the variation of normal pressure, the third and fourth the variations of tangential
 pressure, the fifth the resistance due to the molecules of a different system, and the sixth

 the external force acting on the system.

 The investigation of the values of the second, third, and fourth terms must be deferred

 till we consider the variations of the second degree.

 Condition of Equilibriumn of a Jixture of Gases.

 In a state of equilibrium mnl and in2 vanish, g becomes pi. and the tangential pressures
 vanish, so that the equation becomes

 dp 1
 d27 =Xgl)* * -* * @ * *; * * (77) dxX- 1. T

 which is the equation of equilibrium in ordinary hydrostatics.
 This equation, being true of the system of molecules forming the first medium inde-
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 MR. CLERK MAXWELL ON THE DYNAMICAL THEORY OF GASES. 73

 pendently of the presence of the molecules of the second system, shows that if several

 kinds of molecules are mixed together, placed in a vessel and acted on by gravity,
 the final distribution of the molecules of each kind will be the same as if none of the

 other kinds had been present. This is the same mode of distribution as that which

 DALTON considered to exist in a mixed atmosphere in equilibrium, the law of diminution

 of density of each constituent gas being the same as if no other gases were present.
 This result, however, can only take place after the gases have been left for a consider-

 able time perfectly undisturbed. If currents arise so as to mix the strata, the composi-

 tion of the gas will be made more uniform throughout.

 The result at which we have arrived as to the final distribution of gases, when left to

 themselves, is independent of the law of force between the molecules.

 iijjhsion of Gases.

 If the motion of the gases is slow, we may still neglect the tangential pressures. The
 equation then becomes for the first system of molecules

 - 1) I i+- 7?2(162 - ttj)+Xgjn n* . * . . ..(78)
 and for the second,

 U.2>+dLP ,::- e (u1 2+X0(79) a 2+ l22t=Z ''dX g2 16-'2) + X02

 In all cases of quiet diffusion we may neglect the first term of each equation. If Eve

 then put p2 -+2-apt and ?I +g2= , we find by adding,

 .(80)

 If wve also Put ldJl +,V2th2-=J)T1 then the volumes trarnsferred in opposite dir ections across
 a plane moving with velocity it will be equal, so that

 p1(ul-nV)= 2(z-mt2) = --~tA (xo Pi~) . .......(81)

 Here 1(ztb - u) is the volume of the first gas transferred in unit of time across unit
 of area of the plane reduced to pressure unity, and at the actual temperature; and

 P2(6-t62) is the equal volume of the second gas transferred across the same area in the
 opposite direction.

 The external force X has very little effect on the quiet diffusion of gases in vessels of

 moderate size. We may therefore leave it out in our definition of the coefficient of

 diffusion of two gases.

 When two gases not acted on by gravity are placed in different parts of a vessel at equal

 pressures and temperatures, there will be mechanical equilibrium from the first, and t&
 will always be zero. This will also be approximately true of heavy gases, provided the
 denser gas is placed below the lighter. l Mr. GRAAMI has described in his paper on the
 Mobility of Gases*, experiments which were mlade under these conditions. A vertical

 * Philosophical Transactions, 1863.

 AMDCCCLXVII.
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 tube had its low er te-nth parIt flled with " he' vy gas, and the remaining nine-tenths with

 a lighter g s. After the lapse of a known time the upper tenth part of the tube was
 shut Off, and the gas in it analyzed, so as to determine the quantity of the heavier gas
 which had ascended into the upper tenth of the tube during the given time.

 In this case we haveu -. (82)

 Pitt, P112 I dp 1 .(28.3) p d'
 and by the equation of continuity,

 dt+d ( hIP)O.(84)

 whence

 7pI PIP2 1 ,_. ,
 d1t e1gQkAtl dz -,.(5

 or if we put D= PIP2 ,
 gjgekAj P

 -lp I d2p1 Ddt. . ,* . . .(86)
 'The solution of tuis equation is

 P1 = Ci + C~enff2Dtcos (nx q-1-)+ &c. (87)
 If thie length of tde. tube is a, and if it is closed at both ends,

 + ~e ( COS a C az cos &c..(88)

 where C1, C2, C. are to be determined by the condition that when t1O, pi- from
 .=0 to 6x= I ce and 1=0 from x-1-Oa to x=a. The general expression for the case
 in which the first gas originally extends from x. =0 to x=b, and in which after a time t

 the gas from x=0 to x=c is collected, is

 Pi b 2a t 7 . 7rb . wc I -4-D - 2 . b . 2,rc p {eazs2 i, n sinsm7a sin aS s- an +&C.}, . . . (89)

 whe1ere is the proportion of the first gas to tihe whole in the portion from = 0 to
 p

 XV- C.

 In Mr. GRAuIAM's experiments, in which one-tenth of the tube was filled with the first

 gas, and the proportion of the first gas in the tenth of the tube at the other end ascer-
 tained after a time t, this proportion will be

 pi 20{_ _ t i 102--e sin 2 +e a Sill 3 }
 P 10 sl210 etY si22+e &C4.... (9 0)

 We find for a series of values of taken at equal intervals of time T, where

 - oo- 10 a2
 r1 07_
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 Time. pa

 0 0

 T '01193

 2 T 02305

 3T '03376

 4T -04366

 5T -05267

 6 T a06072

 ST *07321

 10T '08227

 12 T 08845

 Go *10000

 Mr. GRAHAM.'s experiments on carbonic acid and air, when compared with this Table, give&
 T=500 seconds nearly for a tube 0'57 metre long. Now

 loo'. 10 a2
 D= n ,. . * * * * * * . . . (91)

 whence
 D=_0235

 for carbonic acid and air, in inch-grain-second measure.

 -Definition of the Coefficient of Jiffiusion.

 D is the volume of gas reduced to unit of pressure which passes in unit of time

 through unit; of area when the total pressure is uniform and equal to ), and the pressure

 of either gas increases or diminishes by unity in unit of distance. D may be called the

 coefficient of diffusion. It varies directly as the square of the absolute temperature, and

 inversely as the total pressure p.

 The dimensions of D are evidently L2T-1, where L and T are the standards of length
 and time.

 In considering this experiment of the interdiffusion of carbonic acid and air, we have
 assumed that air is a simple gas. Now it is well known that the constituents of air can

 be separated by mechanical means, such as passing them through a porous. diaphragm,

 as in Mr. GRAHAM'S experiments on Atmolysis. The discussion of the interdiffusion of

 three or more gases leads to a much more complicated equation than that which we have

 found for two gases, and it is not easy to deduce the coefficients of interdiffusion of the

 separate gases. It is therefore to be desired that experiments should be made on the
 interdiffusion of every pair of the more important pure gases which do not act chemically
 on each other, the temperature and pressure of the mixture being noted at the time of

 experiment.

 ArE. GRAHAM has also published in BRAS-DE'S Journal for 1829, Pt. 2, p. 74, the results

 jL 2
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 of experiments on the diffusion of various gases out of a vessel through a tube into air.

 The coefficients of diffusion deduced from these experiments are-

 Air and Hydrogen . .026216

 Air and Marsh-gas . ....010240

 Air and Ammonia . .00962

 Air and Olefiant gas. . 00771

 Air and Carbonic acid . . 00682

 Air and Sulphurous acid . 00582

 Air and Chlorine. .00486

 The value for carbonic acidl is only one third of that deduced from the experiment

 with the vertical column. The inequality of composition of the mixed gas in different

 parts of the vessel is, hoowever, neglected; and the diameter of the tube at the middle

 part, where it vas bent, was probably less than that given.

 Those experiments on diffusion which lasted ten hours, all give smaller values of D

 than those which lasted four hours, and this would also result from the mixture of the
 gases in the vessel being imperfect.

 Interdiffitsion through a s8cnll hole.

 When two vessels containing different gases are connected by a small hole, the mixture

 of gases in each vessel will be nearly uniform except near the hole; and the inequality

 of the pressure of each gas will extend to a distance from the hole depending on the

 diameter of the hole, and nearly proportional to that diameter.

 Hence in the equation

 AUI +Ld.=kAg:,gtt,2_tt- . (92)

 the term dp will vary inversely as the diameter of the hole, while u, and uf2 will not

 vary considerably with the diameter.

 Hence wheu the hole is very small the right-hand side of the equation may be neg-

 lected, and the flow of either gas through the hole will be independent of the flow of the

 other gas, as the term AA gIg 2(tt-2 ) becomes comparatively insignificant.
 One gas therefore will escape through a very fine hole into another nearly as fast as

 into a vacuum; and if the pressures are equal on both sides, the volumes diffused will be
 as-the square roots of the specific gravities inversely, which is the law of diffusion of

 gases established by GRAHAM*.

 Variation of the invisible agitation ([).

 By putting for Q in equation (75)

 At((tl + d )2 + (v + )2 + (w, + 1)2 + (PIf)(8I- +42 2)) . . (9)

 T Trans. BRoyal Society of Ediniburgh, vol. xii. p. 222.
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 and eliminating by means of equations (76) and (52), we find

 1 2tl3(l+1 1 dx dv dd

 +g (YltZ +dy +ll dx dz J+~llty+

 + { d(g 3g e 2+g ffi 2)+;d (g nIZ2+g n3+g n8 2)+ d (gj C 2+g r1g2+ r3}l

 k A -2
 _ _ 19g 2 M M2(26 ) r-A 2 +(2Wl)2] +Aj2(a2 +42 +2)-M 1 (2 +n2 + 2)}: MI+M2L u~ 2?(V V)2+ (W -I2 I2 4

 In this equation the first term represents the variation of invisible agitation or heat;

 the second, third, and fourth represent the cooling by expansion; the fifth, sixth, and
 seventh the heating effect of fluid friction or viscosity; and the last the loss of heat by
 conduction. The quantities on the other side of the equation represent the thermal
 effects of diffusion, and the communication of heat from one gas to the other.

 The equation may be simplified in various cases, which we shall take in order.

 1st. Equilibrium of Temperature between two Gases.-Law of Equivalent Volumes.

 We shall suppose that there is no motion of translation, and no transfer of heat by
 conduction through either gas. The equation (94) is then reduced to the following form,

 kgj2Af
 2I aP1( + + P' ) = 1M21 M2( 2 + i2+ 2) -2 MK1+ 72)+ ?)j (95

 If we put

 lM2 +4_1 + "2)=Q,, and M 2 + 2(2?+ 42+'2) >Q25(96)
 we find

 a(Q2- Q1) M5 (M2g2P4 +M?,_1,2)(Q2-Q), .(97)
 or

 Q2 QI=Ce-t, where Qzf 2kAM(M2g2PB2+M1P1) 9

 If, therefore, the gases are in contact and undisturbed, Q, and Q2 will rapidly become
 equal. Now the state into which two bodies come by exchange of invisible agitation is
 called equilibrium of heat or equality of temperature. Hence when two gases are at
 the same temperature,

 Q1Q2(99
 or

 2~ ni(?-2 + )

 M Pi
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 Hence if the pressures as well as the temperatures be the same in two gases,

 M, M2 .(100)
 91 92

 or the masses of the individual molecules are proportional to the density of the gas.

 This result, by which the relative masses of the molecules can be deduced from the
 relative densities of the gases, was first arrived at by GAY-LUSSAC from chemical consi-

 derations. It is here shown to be a necessary result of the Dynamical Theory of Gases;

 and it is so, whatever theory we adopt as to the nature of the action between the indi-
 vidual molecules, as may be seen by equation (34), which is deduced from perfectly general
 assumptions as to the nature of the law of force.

 We may therefore henceforth put s for M J where s,, s2 are the specific gravities of
 S2 2

 the gases referred to a standard gas.

 If we use 0 to denote the temperature reckoned from absolute zero of a gas thermo-

 mneter, MO the mass of a molecule of hydrogen, VY its mean square of velocity at tempe-
 rature unity, s the specific gravity of any other gas referred to hydrogen, then the mass

 of a molecule of the other gas is
 M=MOs.( 10(1)

 Its mean square of velocity,

 V2 V.0. . (102)

 Pressure of the gas,

 _3_ 0 . (103)

 We may next determine the amount of cooling by expansion.

 Cooling by Evpansion.

 Let the expansion be equal in all directions, then

 dv d_ du_ 1e
 TZ- - dz 3g bt' * * * * * * * * * (104)

 and du and all terms of unsymmetrical form will be zero.
 dy

 If the mass of gas is of the saiae temperature throughout there will be no conduction
 of heat, and the equation (94) will become

 t V g 3.= .(105)
 or

 - N - e . . V . (106)
 or

 ~~~O2~~~~~~~.~~(10Th
 0 5~
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 MR. CLERK MAXWELL ON THE DYNAMICAL THEORY OF GASES. d9

 without exchange of heat with other bodies. We also find

 P 0

 2+3 . ..(108)

 which gives the relation between the pressure and the density.

 Specific Heat of Unit of Mlass at Constant Volume.

 The total energy of agitation of unit of mass is PV32=E, or

 -E -.(109)

 If, now, additional energy in the form of heat be communicated to it without changing
 its density,

 a6E= 3 p- 3P=3Sp 360. (110)
 2 g -2 -hI.(110)

 Hence the specific heat of unit of mass of constant volume is in dynamical measure

 -E3p p

 ~ao~ -4- * * * * .

 Specific Heat of Unit of fass at Constant Pressure.

 By the addition of the heat aE the temperature was raised aO and the pressure p
 Now, let the gas expand without communication of heat till the pressure sinks to its

 former value, and let the final temperature be 0+ -6O. The temperature will thus sink
 by a quantity by-I', such that

 3O-'- 2 ap 2 'a
 O 2+3 p2+33 0'

 whence

 02+ 31 as . .....(112)
 and the specific heat of unit of mass at constant pressure is

 -E 2+3P p
 T'O 2 g.(li.)

 The ratio of the specific heat at constant pressure to that of constant volume is known

 in several cases from experiment. We shall denote this ratio by

 2 -f3f0 (114)
 whence

 f32 1 . . . . . . 15

 The specific heat of unit of volume in ordinary measure is at constant volume

 .1 p I
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 and at constant pressure

 7 1 .(117)

 where J is the mechanical equivalent of unit of heat.

 From these expressions Dr. RANKXNE * has calculated the specific heat of air, and has
 found the result to agree with the value afterwards determined experimentally by

 Mi. IREGNAULTt.

 Thiermnal Effects of _DIffusion.

 If two gases are diffusing into one another, then, omitting the terms relating to heat

 generated by friction and to conduction of heat, the equation (94) gives

 'a ~2 du~ d !~vfduddv\
 ~~ ~ ~~~+di+2))+r2(? ? 2) 18 2gl atl~il 8 +C) + S2a t2(22 22 p dU ds 4dv &2d2g2

 -klISA {(/Il-t2) +(Vl-V2) (~ iD)2}

 By comparison with equations (78), (79), the right-hand side of this equation becomes

 X(?'ttl +?2Y2) +Y(?,V1 +e2v2) +Z(g1w1 +?2w2)

 (I2 ?V2+ -iwW) (d 1+ d V+ I dX U2+4- d(2 2
 -1S(2l+V2+W2)---2tt2t2i2

 The equaction (118) may now be written

 1 2tt1 + VI + W21 + P 1 ( 1 +;2 + i)) _L '2) 2 t2 ' 2 + +o2 `U2 k 2 + 2))

 X(gu, +?2 2)+Y(b1ViE +-2v2) _LZ(ol'w, +gW2)- (dx+ d dz

 The whole increase of energy is therefore that due to the action of the external
 forces minus the cooling due to the expansion of the mixed gases. If the diffusion
 takes place without alteration of the volume of the mixture, the heat due to the mlu-
 tual action of the gases in diffusion will be exactly neutralized by the cooling of each
 gras as it expands in passing from places where it is dense to places where it is rare.

 bDeterminttation of the Inequality of Pressure in different directions due to the

 Motion of the Aiiedittm.

 Let us put

 162pj and g2e2-P2+q2.(120)
 Then by equation (52),

 -- - M P + M3 (2 1A1 ? 3 A2)?2ql -k(3A2 - 2A1) M # M2

 M 22 - -2 - (121)
 JM-A -Aj)(2u,-u2,-V1 _..v2 - I-W1-2), 4

 * Transactions of the Royal Society of Edinburgh, vol. xx. (185O0). j Comnptes Tehuds, 18S53.
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 the last term depending on diffusion; and if we omit in equation (75) terms of three

 dimensions in 0, a, ', which relate to conduction of heat, and neglect quantities of the

 form Eng and ?S2_p, when not multiplied by the large coefficients k, k1, and k2-, we get

 +q 9u-uP - dx +d - .. (122)

 If the motion is not subject to any very rapid changes, as in all cases except that of

 the propagation of sound, we may neglect ai. In a single system of molecules

 -3kA2q .(12a)

 whence
 2p fdu 1 /du dA dwNl
 -3hcA~ldz3 ?Xr+ Jr J. . .(124)

 If we make

 . . (125)

 will be the coefficient of viscosity, and we shall have by equation (120),

 >2 9fdU 1 (du1 dv dw\ 1
 at~ kp-l>X's dcJrdy + dz }f }

 2 _ rov Ad, dv dwf
 ?4=- A.JJ +.T(126)

 gX ~ At dy 3 WXd dT}t ~~~d (d? dv dz)}'

 and by transformation of coordinates we obtain

 Ad dwN

 TX+u ..(127)

 / du Ao

 These are the values of the normal and tangential stresses in a simple gas when the

 variation of motion is not very rapid, and when p, the coefficient of viscosity is so small
 that its square may be neglected.

 Equations of Motion corrected for Fiscosity.

 Substituting these values in the equation of motion (76), we find

 au dp rd2u d2u d2u1 d /du ddw\

 at d- l Jr + P - W x+ Jr =Xe, .(128)
 with two other equations which may be written down from symmetry. The form of
 these equations is identical with that of those deduced by PoISSON* from the theory of

 * Journal de P'Icole Polytechnique, 1829, tom. xiii. cah. xx. p. 139.

 MDCCCLXVII. Xl
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 elasticity, by supposing the strain to be continually relaxed at a rate proportional to its
 amount. The ratio of the third and fourth terms agrees with that given by Professor
 STOKES *.

 If we suppose the inequality of pressure which we have, denoted by q to exist in the
 medium at any instant, and not to be maintained by the motion of the medium, we find,
 from equation (123),

 = .Ce-3kA2. . . ,. . . , , 0 (129)

 =Ce r if T- (130) 3kA29-p(10

 the stress q is therefore relaxed at a rate proportional to itself, so that
 sq it

 q- . . . . . . . . . . . (:131)
 We may call T the modulus of the time of relaxation.

 If we next make k= 0, so that the stress q does not become relaxed, the medium will
 be an elastic solid, and the equation

 _Le-02-I) 2p19z_ 2p~dudde) .0 . . . . . . . (132)
 may be written

 'a t 7 - dx ( y+ ) ) (+ }=?0 (133)
 where oa, 0, y are the displacements of an element of the medium, and p? is the normal

 pressure in the direction of x. If we suppose the initial value of this quantity zero, and

 pu originally equal to p, then, after a small displacement,

 It'd~v =1? - 1, (+ WY-a + -2p d * * * * . . . . .(134)
 and by transformation of coordinates the tangential pressure

 -.y . . + d .(135)

 The medium has now the mechanical properties of an elastic solid, the rigidity of
 which isp, while the cubical elasticity is -s-pt.
 The same result and the same ratio of the elasticities would be obtained if we supposed
 the molecules to be at rest, and to act on one another with forces depending on the
 distance, as in the statical molecular theory of elasticity. The coincidence of the pro-
 perties of a medium in which the molecules are held in equilibrium by attractions and
 repulsions, and those of a medium in which the molecules move in straight lines with-
 out acting on each other at all, deserves notice from those who speculate on theories of
 physics.

 The fluidity of our medium is therefore due to the mutual action of the molecules,
 causing them to be deflected from their paths.

 * " On the Friction' of Fluids in Motion and the Equilibriuim and Motion of Elastic Solids," Cambridge
 Phil. Trans. vol. viii. (1845), p. 297, equation (12).

 t Ibid. p. 311, equation (29).
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 The coefficient of instantaneous rigidity of a gas is therefore p.

 The modulus of the time of relaxation is T. . . . (136)

 The coefficient of viscosity is i=pT. J
 Now p varies as the density and temperature conjointly, while T varies inversely as

 the density.

 Hence p varies as the absolute temperature, and is independent of the density.
 This result is confirmed by the experiments of Mr. GRAHAM on the Transpiration of

 Gases*, and by my own experiments on the Viscosity or Internal Friction of Air and

 other Gasest.

 The result, that the viscosity is independent of the density, follows from the Dyna.
 mical Theory of Gases, whatever be the law of force between the molecules. It was,,

 deduced by myself$ from the hypothesis of hard elastic molecules, and M. 0. E. MEYER?
 has given a more complete investigation on the same hypothesis.

 The experimental result, that the viscosity is proportional to the absolute temperature,

 requires us to abandon this hypothesis, which would make it vary as the square root of

 the absolute temperature, and to adopt the hypothesis of a repulsive force inversely as

 the fifth power of the distance between the molecules, which is the only law of force

 which gives the observed result.

 Using the foot, the grain, and the second as units, my experiments give for the tem-

 perature of 620 FAHRENHEIT, and in dry air,

 b= 0-0936.
 If the pressure is 30 inches of mercury, we find, using the same units,

 p=477360000.

 Since -PT-, we find that the modulus of the time of relaxation of rigidity in air of
 this pressure and temperature is

 5099100000 of a second.

 This time is exceedingly small, even when compared with the period of vibration of

 the most acute audible sounds; so that even in the theory of sound we may consider the

 motion as steady during this very short time, and use the equations we have already

 found, as has been done by Professor STOKES 11.

 Viscosity of a MJixture of Gases.

 In a complete mixture of gases, in which there is no diffusion going on, the velocity

 at any point is the same for all the gases.

 * Philosophical Transactions, 1846 and 1849.

 t Proceedings of the Royal Society, February 8, 1866; Philosophical Transactions, 1866, p. 249.

 + Philosophical Magazine, January 1860. ? POGGENDORrr'S 'Annalen,' 1865.
 11 "s On the effect of the Internal Friction of Fluids on the motion of Pendulums," Cambridge Transactions,

 vol. ix. (1850), art. 79.

 Mi 2
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 Putting

 2 (2) ddu_ Edv dw)=U 137 3 .~(137)
 equation (122) becomes

 PU =- 3k1DA2Cq1 M + M - k21!HI1Al +___ 3M2L&'q,~g1-k( -2A,). . (1 3 8) 1U U~,,?q~ Ml+M (2MA, ?3MA2)?2qj -l( 3A2 - 2A1) ~ S
 Similarly,

 k
 U=3Jc2A2Q2q2 M +-M- (2M2A, + 3M1A2)g ,2- k(3A2-2Ai)-M-+- g2 . (139)

 Since =2+22 and q=q +_q2, where p and q refer to the mixture, we shall have

 PU= -q= -(1+q42)
 where 4 is the coefficient of viscosity of the mixture.

 If we put s, and 52 for the specific gravities of the two gases, referred to a standard

 gas, in which the values of p and o at temperature 80 are _p and Do,

 Po EpFp1p2+Gp (140)
 go90 * 3A2ks1Ep~ + Hp1p2 + 3A2k2&2Gp.4

 where 6 is the coefficient of viscosity of the mixture, and

 E = +ks (2s2A1+3slA2),
 S1 +S2

 F= 3A2(k1s1 +k2S2) - (3A2- 2A,)1218 +2 l
 ~~1+S2. ~~~(141)

 G-1s2 (2sAl+3s2A2),

 H {3A2slS { 3k11c2A2?+ 21cA1 }. I

 This expression is reduced to p, when P2=0, and to ('2 when 2p= 0. For other values
 of 2p and p2 we require to know the value of ie, the coefficient of mutual interference of

 the molecules of the two gases. This might be deduced from the observed values of P
 for mixtures, but a better method is by making experiments on the interdiffusion of the

 two gases. The experiments of GRAHAM on the transpiration of gases, combined with

 my experiments on the viscosity of air, give as values of k, for air, hydrogen, and car-
 bonic acid,

 Air .k, - 4 8i X lO0,

 Hydrogen . . . kl=142-8 x1010,
 Carbonic acid . . /= 3-9 X 110'.

 The experiments of GRAHAM in 1863, referred to at page 73, on the interdiffusion of

 air and carbonic acid, give the coefficient of mutual interference of these gases,

 Air and carbonic acid . k=5-2 X 1010;

 and by taking this as the absolute value of k, and assuming that the ratios of the coeffi-
 cients' of interdiffusion given at page 76 are correct, we find

 Air and hydrogen . . k=29~8X1010.

This content downloaded from 76.118.176.106 on Tue, 13 Dec 2016 21:31:57 UTC
All use subject to http://about.jstor.org/terms



 MR. CLERK MAXWELL ON THE DYNAMICAL THEORY OF GASES. 85

 These numbers are to be regarded as doubtful, as we have supposed air to be a simple
 gas in our calculations, and we do not know the value of le between oxygen and nitrogen.

 It is also doubtful whether our method of calculation applies to experiments such as the
 earlier observations of Mr. GRAHAM.

 I have also examined the transpiration-times determined by GRAHAM for mixtures of

 hydrogen and carbonic acid, and hydrogen and air, assuming a value of le roughly, to

 satisfy the experimental results about the middle of the scale. It will be seen that the

 calculated numbers for hydrogen and carbonic acid exhibit the peculiarity observed in

 the experiments, that a small addition of hydrogen increases the transpiration-time of

 carbonic acid, and that in both series the times of mixtures depend more on the slower

 than on the quicker gas.

 The assumed values of k in these calculations were-

 For hydrogen and carbonic acid k=12-5 X 10'1,

 For hydrogen and air. . . k=18'8X 1010;

 and the results of observation and calculation are, for the times of transpiration of

 mixtures of-

 Hydrogen and Carbonic acid. Observed. Calculated. 11Hydrogen and Air. Observed. Calculated.

 100 0 *4321 *4375 100 0 *4434 *4375
 97.5 2.5 *4714 *4750 95 5 *5282 *5300
 95 5 *5157 *5089 90 10 *5880 60 8
 90 10 *5722 *5678 75 25 17488 *7438
 75 25 6786 *6822 50 50 8179 8488
 50 50 17339 *765 25 75 .8790 *8946
 25 75 *7535 17468 1 0 90 *8880 *8983
 10 90 *7521 7361 ! 5 95 *8960 ^8996
 0 100 1470 7272 0 100 *9000 *9010

 The numbers given are the ratios of the transpiration-times of mixtures to that of

 oxygen as determined by Mr. GRAHAM, compared with those given by the equation (140)

 deduced from our theory.

 Conduction qf Heat in a Single Medium (y).

 The rate of conduction depends on the value of the quantity

 where W f, and i2 denote the mean values of those functions of 4, a, C for all the
 molecules in a given element of volume.

 As the expressions for the variations of this quantity are somewhat complicated in a

 mixture of media, and as the experimental investigation of the conduction of heat in
 gases is attended with great difficulty, I shall confine myself here to the discussion of a

 single medium.

 Putting

 Q_~~t {')} .e+oW + .tt v+tt+()X 2 (142)
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 and neglecting terms of the forms id and 03 and n2 when not multiplied by the large

 coefficient kj, wve find by equations (75), (77), and (54),

 g P(53+ 42+r?2)?+p d g(f4+ 22 +9 2C2) (02 + 2 + 2) dp_ 2 dp

 --3k1 2A20 {43+Mn2+aC2*.

 The first term of this equation may be neglected, as the rate of conduction will rapidly

 establish itself. The second term contains quantities of four dimensions in 0, a, 7

 whose values will depend on the distribution of velocity among the molecules. If the

 distribution of velocity is that which we have proved to exist when the system has no

 external force acting on it and has arrived at its final state, we shall have by equations

 (29), (31), (32),
 ~4 - 32. 2 =3 .(144)

 2.2= 4.2= * *.(145)

 _2 _ L2;(146)

 and the equation of conduction may be written

 5Ppf- do _3k e2A2. . . . . . .3. (147)

 [Addition made December 17, 1866.]

 [Final Equmibriun of Teinperature.]

 [The left-hand side of equation (147), as sent to the Royal Society, contained a term

 2(P3-1)Pg d, the result of which was to indicate that a column of air, when left to

 itself, would assume a temperature varying with the height, and greater above than

 below. The mistake arose from an error* in equation (143). Equation (147), as now
 corrected, shows that the flow of heat depends on the variation of temperature only, and
 not on the direction of the variation of pressure. A vertical column would therefore,
 when in thermal equilibrium, have the same temperature throughout.

 When I first attempted this investigation I overlooked the fact that 04 is not the same

 as , ,2, and so obtained as a result that the temperature diminishes as the height increases
 at a greater rate than it does by expansion when air is carried up in mass. This leads

 at once to a condition of instability, which is inconsistent with the second law of thermo-

 dynamics. I wrote to Professor Sir W. TiOMSON about this result, and the difficulty I
 had met with, but presently discovered one of my mistakes, and arrived at the conclu-

 sion that the temperature would increase with the height. This does not lead to mecha-

 * The last term on- the left-hand side was not multiplied by j3.
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 nical instability, or to any self-acting currents of air, and I was in some degree satisfied

 with it. But it is equally inconsistent with the second law of thermodynamics. In fact,

 if the temperature of any substance, when in thermic equilibrium is a function of the

 height, that of any other substance must be the same function of the height. For if not,

 let equal columns of the two substances be enclosed in cylinders impermeable to heat,
 and put in thermalI communication at the bIottom. If, when in thermal equilibrium, the
 tops of the two columns are at -different temperatures, an engine might be worked by

 taking heat from the hotter and giving it up to the cooler, and the refuse heat would

 circulate round the system till it was all converted into mechanical energy, which is in
 contradiction to the second law of thermodynamics.

 The result as now given is, that temperature in gases, when in thermal equili-

 brium, is independent of height, and it follows from what has been said that tempera-

 ture is independent of height in all other substances.

 If we accept this law of temperature as the actual one, and examine our assunmptions,
 we shall find that unless 4=3.2, we should have obtained a different result. Now

 this equation is derived from the law of distribution of velocities to which we were led

 by independent considerations. We may therefore regard this law of temperature, if

 true, as in some measure a confirmation of the law of distribution of velocities.]

 Coefcient of Conductivity.

 If C is the coefficient of conductivity of the gas for heat, then the quantity of heat

 which passes through unit of area in unit of time measured as mechanical energy, is

 dO 5 p3 p2

 ad 6 k1A2 20 dX.(148)
 by equation (147).

 Substituting for I3 its value in terms of y by equation (115), and for k1 its value in

 terms of p by equation (125), and calling _p, 6, and Do the simultaneous pressure, density,
 and temperature of the standard gas, and s the specific gravity of the gas in question,
 we find

 __Po P C=____ ___.(149)

 For air we have ry=1409, and at the temperature of melting ice, or 2740.6 C.

 above absolute zero, v/=918-6 feet per second, and at 16'-6 C., pj=00936 in foot-

 grain-second measure. Hence for air at 1646 C the conductivity for heat is

 C=1172. (150)

 That is to say, a horizontal stratum of air one foot thick, of which the upper surface is
 kept at 170 C., and the lower at 160 C., would in one second transmit through every
 square foot of horizontal surface a quantity of heat the mechanical energy of which is

 equal to that of 2344 grains moving at the rate of one foot per second.
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 Principal FonBRES* has deduced from his experiments on the conduction of heat in
 bars, that a plate of wrought iron one foot thick, with its opposite surfaces kept 10Y C.

 different in temperature, would, when the mean temperature is 250 C., transmit in one

 minute through every square foot of surface as much heat as would raise one cubic foot

 of water 040127 C.

 Now the dynamical equivalent in foot-grain-second measure of the heat required to

 raise a cubic foot of water 10 C. is P 9157 X 10'.

 It appears from this that iron at 250 C. conducts heat 3525 times better than air at

 16?46 C.

 M. CLAUSIUS, from a different form of the theory, and from a different value of {?

 found that lead should conduct heat 1400 times better than air. Now iron is twice as

 good a conductor of heat as lead, so that this estimate is not far different from that of

 M. C"AUSIUS in actual value.

 In reducing the value of the conductivity from one kind of measure to another, we

 must remember that its dimensions are MLT-3, when expressed in absolute dynamical

 measure.

 Since all the quantities which enter into the expression for C are constant except P,
 the conductivity is subject to the same laws as the viscosity, that is, it is independent

 of the pressure, and varies directly as the absolute temperature. The conductivity of
 iron diminishes as the temperature increases.

 Also, since y is nearly the same for air, oxygen, hydrogen, and carbonic oxide, the
 conductivity of these gases will vary as the ratio of the viscosity to the specific gravity.

 Oxygen, nitrogen, carbonic oxide, and air will have equal conductivity, while that of
 hydrogen will be about seven times as great.

 The value of y for carbonic acid is 1-27, its specific gravity is 1.1 of oxygen, and its
 viscosity -8- of that of oxygen. The conductivity of carbonic acid for heat is therefore

 about 9- of that of oxygen or of air.

 " 4' Experimental Inquiry into the Laws of the Conduction of Heat in Bars," Edinburgh Transactions, 1861-62.
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