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I. Introduction

Historically, dynamics and thermodynamics developed independently.
Boltzmann and his successors tried to bridge the gap between the two
disciplines by constructing statistical dynamical theories of many-particle
systems, but although such theories have enjoyed considerable practical
success, their foundations are still far from secure. As Tisza has empha-
sized,! dynamical and thermodynamical descriptions are complementary.
Dynamical descriptions are deterministic, reversible, and require (in Tisza’s
phrase) an exhaustive specification of initial data; thermodynamical
descriptions are stochastic, irreversible, and require a selective specification
of initial data.

It is widely held that dynamical descriptions are more fundamental
than thermodynamical descriptions because one arrives at a thermody-
namical description by selectively ignoring certain kinds of information
about a complex system. But irreversibility and macroscopic order—two
features of thermodynamical descriptions that have no counterparts in a
dynamical description—seem to be objective properties of the world
rather than artifacts of a particular mode of description. Tisza has argued
persuasively that thermodynamical descriptions are in fact no less funda-
mental than dynamical descriptions and may even be more fundamental,
Although he believes that a “reasonably unified logical structure™ for
dynamics and thermodynamics may be found, he stresses the importance
of keeping an open mind about the form it will take.

Prigogine” has recently proposed to unify dynamics and thermodynam-
ics through a fundamental change in the foundations of dynamics. He
suggests that “the basic concepts of classical (or quantum) mechanics,
such as trajectories or wave functions, correspond to unobservable
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idealizations.” In Prigogine’s proposed generalization of dynamics, the
classical microscopic (Gibbs) entropy is not a functional of the phase
density but an operator. Its quantal analogue is not a functional of the
density operator but a supperoperator. Thus the classical phase density
does not have a definite value unless it happens to be an eigenfunction of
the microscopic entropy operator. In this way dynamical descriptions—
classical as well as quantal-—acquire an irreducibly stochastic character.

A stochastic description, however, does not necessarily single out a
preferred direction in time. In Prigogine’s theory, irreversibility is built
into the microscopic dynamical laws. Prigogine postulates that the
(classical) Liouville operator L and the newly defined entropy operator
M satisfy a commutation relation

—i(LM — ML)=D <0.

D represents the rate of ““‘microscopic entropy production”—a concept
peculiar to Prigogine’s theory.

Prigogine’s account of macroscopic irreversibility differs radically from
those offered by Boltzmann and his successors. Boltzman derived his H
theorem from the postulate of molecular chaos. Modern kinetic theories
of the kind pioneered by Bogoliubov and van Hove postulate that certain
kinds of microscopic information (e.g., correlations) are absent at some
initial moment or vanish in the limit 1 - — oo (instead of being perma-
nently absent, as Boltzmann assumed). Such assumptions introduce a
preferred direction in time, namely, the direction away from the initial
state. Prigogine’s theory, by contrast, dispenses with assumptions about
randomness: “Both randomness and irreversibility are consequences of
the structure of the equations of motion.”

In this essay I shall describe an alternative theoretical framework that
unites quantum mechanics, statistical thermodynamics, and modern
kinetic theories of irreversible processes, and that reconciles Tisza's
“two kinds of causality.” The key to this reconciliation is the Strong
Cosmological Principle, which asserts that in a complete description of
the physical universe all points in space are indistinguishable, as are all
spatial directions at a given point (section II). Supplemented by the
assumption that little or no information was present in the initial state,
this postulate provides a historical framework within which Tisza’s notion
ol “selective specification of the initial state™ (of a macroscopic system)
acquires a concrete and explicit meaning. | shall argue that a complete
description of an actual macroscopic system usually contains far less
mformation than would be contained in a complete microscopic des-
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cription of the same system (considered ahistorically). What kind of
information about a given system actually is present depends on the
system’s history. Thus the question whether the initial state of a micro-
scopic system satisfies the assumptions of a given kinetic theory of
irreversible processes can in principle be settled by a suitable evolutionary
calculation. For many processes, for example, heat conduction and
molecular diffusion, in most natural contexts, very crude evolutionary
considerations suffice to make a convincing case that the initial conditions
guarantee the growth of entropy. On the other hand, the initial states of
certain specially prepared systems that exhibit “antientropic” behavior
(the spin-echo experiment is the classic example) contain enough informa-
tion to invalidate the premises of relevant irreversibility theorems.

According to the theory to be described, certain kinds of information
about physical systems are objectively present, at any given moment, and
other kinds are objectively absent. Modern kinetic theories have yielded
insight into the microscopic processes that degrade information in many-
particle systems. But where does the information come from in the first
place? I shall argue in section V that it is not present initially. In section VI
I discuss the hierarchy of order-generating processes. 1 shall argue that
distinct classes of order-generating processes are defined by distinct classes
of initial conditions. Order-generating processes are hierarchically related
because each one generates the initial conditions that define its successor.
This scheme includes Prigogine’s hierarchy of orderly configurations
resulting from fluctuations in dissipative systems far from equilibrium.
but is much more general. In particular, it includes processes that generate
order in astronomical and biological contexts.

The present theory, unlike Prigogine’s leaves the mathematical struc-
ture of quantum mechanics unchanged. It does, however, supply a new
physical interpretation of quantal indeterminacy. The Strong Cosmolo-
gical Principle implies that certain kinds of positional information are
unobtainable in principle. I have previously* stated that this spatial
indeterminacy is distinct from quantal indeterminacy—though its
existence depends on the discreteness of quantal descriptions (section I11),
In section VII I argue that positional and quantal indeterminacy are
actually facets of a single kind of indeterminacy. By virtue of the Strong
Cosmological Principle, the universe may be viewed as the realization
of a Gibbs ensemble. Thus, as Einstein believed must be possible, quantal
statements about probabilities and averages can be translated into state-
ments about spatial frequencies and averages. (On the other hand, a
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complete description of microscopic processes requires probability
amplitudes, not just probabilities.)

Finally, I shall argue (section VIII) that the present theory resolves
certain long-standing difficulties in the quantal theory of measurement.
An ideal microscopic measurement creates a correlation between the
eigenstates of the observable being measured and macroscopically
distinguishable states (‘“‘pointer readings’’) of the measuring apparatu.s,
without disturbing the state of the system on which the measurement 1s
performed. And it leaves the system in one of these Eigenstates'. The
theory described below gives a consistent and self-contained description

of such processes.

I1. The Strong Cosmological Principle

The indistinguishability of points in space and of directions at any given
point are symmetry principles satisfied by all existing physical theories.

The Strong Cosmological Principle asserts that in a complete description
of the physical universe all points in space, and all spatial directions at a
given point, are indistinguishable.

This postulate implies that there is a unique decomposition of space-
time into space plus time, and a preferred cosmic reference frame. (To
an excellent approximation, this reference frame is the one in which the
cosmic microwave background is everywhere isotropic.)

A weak form of the preceding assumption was put forward late in the
sixteenth century by Giordano Bruno, and, in the following century, by
Huygens and Newton, who postulated an infinite universe uniformly
sprinkled with stars. Einstein used the assumption, which he called “the
cosmological principle,” in his 1917 paper on relativistic cosmology, as
did Friedmann in his classic paper of 1922. Einstein and Friedmann
considered simplified cosmological models characterized by a spatially
uniform density and an everywhere isotropic velocity field. Observational
cosmology rests on the somewhat stronger assumption, called by Hubble
the “principle of uniformity,” that the statistical properties of astronom-
ical systems are everywhere the same at a given instant of cosmic time.

The Strong Cosmological Principle goes beyond these familiar cosmo-
logical assumptions. It asserts that a complete description of the universe
contains no information that distinguishes between points in space or,
at any given point, between spatial directions. In other words, the strong
cosmological principle asserts that spatial homogeneity and isotropy are
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exact symmetries of the universe itself, as they are of the physical laws
that govern the universe.

Is such an assumption reasonable? Not if one thinks of the universe as
just another macroscopic system. For as Wigner has emphasized,” one
expects the underlying regularities of physical phenomena to be expressed
by laws and symmetry principles, not by auxiliary (initial, boundary, and
symmetry) conditions, which serve to define the specific contexts in which
the laws operate. It is this division between laws and auxiliary conditions
that allows phenomena of unlimited diversity to be governed by a few
simple and exact laws. If we assume that the auxiliary conditions defining
a particular physical system—{for example, a star—are simple, 1t 1s merely
for the sake of mathematical convenience; it would be absurd to postulate
that any real star has exact spherical symmetry.

But these considerations do not apply to the universe as a whole. It is
true that separating the auxiliary conditions from the laws enables us to
construct many different models of the universe. But only one of these
can describe the actual universe. (Analogously, we are at liberty to test
different physical laws. If we wished, we could assert that laws that do
not hold in our own universe hold in some other universe.) Because we
have access to only one universe, the auxiliary conditions that define it
are no less unique than the physical laws that govern its behavior. And
because the laws do not define a preferred position or direction in space,
it seems reasonable to assume that neither do the auxiliary conditions.®

Without the Strong Cosmological Principle or some similar assumption,
Einstein’s theory of gravitation is, in an important sense, incomplete, for
it does not satisfy Mach’s requirement that the gravitational field be
wholly determined by the distribution of mass. If we add the Strong
Cosmological Principle to Einstein’s theory, local inertial coordinate
systems are determined, to a first approximation, by the large-scale
distribution of mass, and local gravitational fields are determined by
local nonuniformities in the distribution of mass, in accordance with
Mach’s principle.” Of course, Einstein’s theory also enables one to
calculate departures of the local inertial coordinate system from the

coordinate system defined by the large-scale distribution of mass (dragging
of the local inertial frame).®
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I11. Incompatibility between the Strong Cosmological Principle and a
Classical Description

Consider a snapshot of a euclidean universe filled with classical particles.
A complete description of the positional information in such a snapshot
clearly distinguishes between positions in space. For example, the ratio
AB/BC between the separations of any three particles 4, B, C is a real
number. There 1s zero probability that any other such ratio has the same
value, because there is only a denumerable infinity of such ratios in an
infinite universe of finite average number density. Thus the value of the
ratio AB/BC 1s almost certain to specify a particular set of three particles,
and hence to define a preferred position 1n space.

It follows that there must be preferred positions and directions in a
universe that admits a classical description.

In addition, a statistical description of a classical universe is necessarily
incomplete. The mutual separations of particles in the snapshot are
specified by an infinite list of real numbers. The number of distinguishable
lists of this kind having identical statistical properties (for example, lists
describing a Poisson distribution of particles with a given mean number
density) is nondenumerably infinite. Hence a statistical description of a
classical universe can never be a complete description. There always exist
microscopically distinguishable realizations of even the simplest statistical
descriptions. Indeed the set of distinct realizations of a given statistical
description 1s nondenumerable.

Thus the Strong Cosmological Principle cannot hold in a universe that
admits a classical description.

IV. One-Dimensional Model Universes Satisfying the Strong
Cosmological Principle

Consider a straight line divided into numbered cells of equal length. Sup-

pose that each cell contains a particle in the spin state |t,’,f> = a| + > + b| -,

where |+ » and |— ) are spin-up and spin-down state vectors, respectively,

and |a|* + |b|? = 1. Assume that there are no interactions among the

particles, so that the single-particle states are mutually independent. The

state vector associated with the 2N + 1 particle occupying the cells labeled
N,—-N+1, ..., Nisthen

2N+ 2N + 1\2
1P =Dy -+ YDy = ) ! f( ’ ) [N (1)

k=) »
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where
2N + 1\~ "
L |5 =D+ |40, [ e D0 =D (@
* In (2) the sum runs over all ordered sequences 1,, ..., t, of length k,

where the ¢; are integers in the range (— N, N). Since there are (*V*!) terms

in the sum, the state vector |y > is normalized if the single-particle state
vectors |+ ), |— ) are.

The scalar product of (1) with its hermitian conjugate gives the identity

2N+1

st <QPN|WN> Ey Z |H|212N+1—k}|b|lk (ZN + l) (3}
k=0 k

For large N the dominant contribution to the sum in (3) comes from

terms with & close to [h|*(2N + 1), and as N increases the range of values

of k that contribute appreciably to the sum gets smaller and smaller. In
the limit N — oo

|a[2[N—k‘}

N
2 ]
b () =10 e MR, @

where k* denotes the value of k that makes the largest contribution to
the sum in (3). This result (a weak form of the law of large numbers) was

first derived, in a mathematically identical context, by James Bernoulli.
From it we conclude that

!'PN> e | rPr[L.!:I 1{1H+1}]>1 {5}

where [x] denotes the integer nearest x.°

The generalization of (5) to the case when i/ is a superposition of any

finite (or denumerably infinite) set of mutually orthogonal states is
straightforward. Thus if

=SSk
W ;I > k|, (6)
then
BB (7)
where
si = [N + D)|<k|y)|*] (8)
and
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2N + 1\ 12
) e
S,I. 31 = o=

is the sum of all products of single-particle state vectors in which s, are
of type |1), s, of type |2), and so on.

Up to this point the argument has covered familiar ground. Let us
now consider what happens to the state vector | Py in the “limit” N = 0.
If instead of (1) we had considered states of the type

120> = [¥D1 -+ |Dns )

passage to the limit N = co would be a continuous process.'?® With
increasing N, the state vectors |¥5> would differ less and less in all of
their properties from the limiting state vector | ¥, ).

But the state vector |¥,>, the “limit” of (1) as N — oo, refers to an
unbounded and statistically uniform aggregate. This aggregate and the
corresponding state vector have a property that is not shared by their
finite counterparts, or even by their infinite but bounded counterparts
(the aggregate of cells 1, 2, ... and the corresponding state vector): The
product state vectors that make up |PN*2 > become indistinguishable in
the limit N = 0.

I have previously discussed this property of unbounded, statistically
uniform aggregates in connection with the problem of thermodynamic
irreversibility.* The state vectors that make up | ¥y are indistinguishable
in the limit N = oo because (a) in this limit they have identical statistical
properties [see equations (7) and (8)], and (b) in a doubly unbounded
sequence we can replace each label i by i + n, where n is any fixed integer.
That is, the product state vectors composing |'Pm> are invariant under
translations of the cell indices. These two properties ensure that it 1s
impossible to exhibit any difference between doubly unbounded products
descended from the distinct finite products that compose |¥x** ). In
short, | ¥, ) is a single product, which may be written

|0 = e lki—1>|ki>]k5+1> B (10)

Here k; denotes the ith label in some list ky, ks, ..., but the cell to which
this label applies is not, and cannot be, specified. Thus |k;> does not
mean the same thing as |k;;, the state vector of the ith cell.

The state represented by (10) differs qualitatively from the state of any
bounded or semibounded system. Because the state vector is a simple
product of single-particle state vectors, every particle may be said to be
in a definite state. But because the number attached to any given cell 1s
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purely arbitrary, we cannot know the location of a particle in a given
state. Conversely, if we focus attention on a particular cell, we cannot
know the state of its occupant.

1V, Randomness and the Growth of Disorder in the Universe

The state vector space for any spatially bounded system has a discrete
basis. So the preceding discussion of a one-dimensional universe applies
to an infinite three-dimensional universe composed of statistically inde-
pendent three-dimensional cells with 1dentical statistical properties. Such
cells can certainly be constructed if, in addition to the Strong Cosmolog-
ical Principle, we assume that all correlation distances are bounded. Since
the rate at which a correlation distance can grow cannot exceed the speed
of light and the time during which it can grow cannot exceed the age of
the universe, all correlation distances will be finite if the cosmic expansion
began from a uniform state or from a nonuniform state in which all
correlation distances (measured in mass units) were finite. Astronomical
observations indicate that the present scale of local irregularities does
not exceed about 3 x 10® light-years.

The assumption that the universe is spatially infinite is also consistent
with current astronomical evidence. Relativistic cosmology relates the
mean spatial curvature to the mean density of matter. The mean spatial
curvature is positive, and space is finite, if the mean density of matter
exceeds a certain critical value proportional to the square of the cosmic
velocity/distance ratio (the Hubble constant). Indirect arguments suggest
that the cosmic mass density is less than this critical value, implying that
the mean spatial curvature is negative or zero and hence that space is
infinite.

The mean spatial curvature is also related to the time that has elapsed
since the beginning of the cosmic expansion (= the age of the universe).
With increasingly large negative values of the spatial curvature, the age
of the universe approaches the reciprocal of the velocity/distance ratio.
This limiting age is currently estimated at 10'? years. If the universe has
zero spatial curvature, its age is two thirds this value, and if the curvature
is positive, the age is still smaller. The most reliable age estimates, based
on relative abundances of radioactive isotopes, suggest that the age of
the universe exceeds the value corresponding to zero spatial curvature,
and thus imply that space 1s infinite.

Nevertheless, the possibility that space is finite cannot yet be definitely
excluded. A finite universe obviously cannot satisly the Strong Cosmologp-
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ical Principle. For example, it would contain a largest galaxy, whose
center of mass would define a preferred position in space. To save the
Strong Cosmological Principle, we would have to suppose that the
universe is a particular realization of a Gibbs ensemble of universes
whose properties are described by a theory that accords equal status to
ecach member of the ensemble. Because a statistically uniform and
isotropic universe of positive spatial curvature is finite in time as well as
in space (it expands to a state of finite minimum density, then contracts
to a final singular state of infinite density), we may imagine the members
of the (discrete) ensemble of possible realizations as being contiguous in
time. Of course, all realizations other than the one we inhabit are in
principle unobservable. They are also causally disjoint, for there can be
no causal connection between events separated by a true cosmological
singularity. In these respects, distinct realizations of a finite universe are
analogous to the finite, causally disjoint “observable universes” into
which we may decompose any infinite universe. (Each “observable
universe” is bounded by the event horizon of an observer at its center.)
Thus the present theory is not tied to the assumption that space is infinite.
Let us now consider in a little more detail the link between a cosmolog-
ical description satisfying the Strong Cosmological Principle and kinetic
theories of irreversible processes in macroscopic systems. Such theories
proceed from the assumption that certain kinds of information about a
particular kind of macroscopic system—for example, information
represented by the off-diagonal elements of a density matrix—are absent
at some initial moment. Suppose we had a complete description of the
universe itself at some initial moment. The laws of physics would then
cnable us (in principle) to find a complete description of the universe at
any later moment of cosmic time. Such a description would tell us whether
the conditions postulated by specific theories of irreversible behavior are
satisfied by specific kinds of natural systems. What kind of information
s present in a given class of natural systems will depend, of course, on
what kind of initial conditions we postulate for the universe as a whole.
The argument up to this point enables us to attach objective meaning
(o the “selective specification of initial data™ for a macroscopic system.
But it does not yet tell us whether the data “normally’” present in macro-
scopic systems are consistent with the practical success of chemical
thermodynamics. For according to the present interpretation of thermo-
dynamics, the validity of the second law reflects the universal absence of

certain kinds of information (e.g., correlations) about the initial states of

naturally occurring systems. Equally, it implies the presence of certain

1
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kinds of macroscopic information (e.g., temperature and concentration
gradients, chemical disequilibrium). So we shall have succeeded in linking
dynamics to statistical thermodynamics, via cosmology, if we can explain
why certain kinds of information are regularly absent from the initial
States of natural systems and why other kinds of information are regularly
present.

The key to this question lies in the cosmic expansion. The rate of the
cosmic expansion is proportional to the square root of the cosmic mass
density. The rates per particle of particle interactions are proportional to
at least the first power of the mass density. (In all cosmological models
the temperature increases with increasing density.) Hence at sufficiently
early times the expansion is much slower than any given particle reaction.
Particle reactions, therefore, have plenty of time to degrade microscopic
information, i.e., to convert “high-grade” information (expressed by one-
and two-particle distribution functions) into “low-grade’ information
(expressed by higher-order distribution functions). It follows that any
microscopic information that might have been present initially would have
been strongly degraded early in the cosmic expansion.

Since the initial presence of microscopic information would have
unobservable consequences, we may as well assume that it was not there
to begin with. That is, we may reasonably postulate that the initial state
admitted a conventional thermodynamical description in terms of macro-
scopic variables (mean density, temperature, lepton-baryon ratio, etc.).
Notice that such an assumption makes sense only for the initial state
(or, more precisely, in the limit 1 — 0), because at later times microscopic
information generated by entropic processes acting on macroscopic
information (either present initially or produced by the cosmic expansion,
as discussed in the next section) must be present.

The simplest assumption is that the initial state contains no informa-
tion whatever—that it was a state of global thermodynamical equilibrium
at zero temperature.'!

The initial absence of microscopic information does not, of course,
imply that microscopic information is absent in all macroscopic systems,
or even in systems “untouched by human hands.” For example, the single-
particle distributions of photons and atoms in interstellar space are far
from equilibrium. But the microscopic order that is present in macroscopic
systems ““derives” from macroscopic order. It is the kind of microscopic
order that characterizes the distribution of perfume molecules in a room
immediately after the bottle from which they emerged has been opened,
rather than the kind of microscopic order that would allow the perfume
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molecules to make their way back into the bottle. Such general state-
ments are necessarily vague. But that is true of all historical generaliza-
tions. And, according to the present theory, the validity of the second
law hinges on a historical generalization.

VI. Growth of Macroscopic Order

If you ask a physicist to name an irreversible natural process, he is likely
to say “friction” or “molecular diffusion” or *heat conduction.” To the
same question a biologist is likely to reply “evolution™ or “*development”
or “learning.” To the physicist, “‘irreversibility”” means the growth of
entropy ; to the biologist it is more likely to mean the growth of biological
order. Present-day physics assigns a central place to the growth of entropy.
The second law of thermodynamics asserts that all natural processes
generate entropy. There are no analogous laws governing the growth of
biological order and the growth of astronomical order. These processes
are usually discussed piecemeal, under highly specific assumptions about
initial conditions. In short, the growth of entropy seems to be a necessary
feature of the world while the growth of order is merely contingent.

In the present theoretical framework, the growth of entropy and the
growth of macroscopic order are complementary processes at essentially
the same level of generality. According to the preceding discussion, the
second law is an inference from (a) more fundamental laws that do not
define a preferred direction in time (except for the breakdown of time
reversal symmetry in certain weak interactions), (b) the Strong Cosmolog-
ical Principle, and (c) an assumption about the cosmic initial state. The
emergence and growth of macroscopic order are consequences of the
same assumptions. Moreover, there exist general rules, analogous to the
second law, governing the growth of information under certain broad
kinds of initial conditions.

I define the information I associated with a statistical description by
the formula

= Hrmsu_Ht {ll}

where H is the entropy and H,,,, is the maximum value of H subject to
piven constraints. Some authors (e.g., Brillouin) define information
simply as negentropy — H. The difference between this definition and
the present one is important because H,,, is not in general constant
during information-generating processes. The quantity H,, represents
potential information. It increases or decreases when the number of states
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accessible to a given system increases or decreases. For example, in
biological evolution, the process of genetic variation may increase or
decrease the quantity of potentional biological information present in a
given population. Differential reproduction (natural selection), on the
» other hand, always diminishes the entropy H and hence always generates
information. This 1s an example of a “general rule governing the growth
of information.” To make it precise, | would need to define the initial
conditions more carefully and, more important, I would need to define
“biological information.” I shall not pursue these questions here, except
to remark that the definition of information always depends on the
theoretical context. In the context of evolutionary theory, biological
information is information that serves to distinguish between genotypes
that confer differing expectations of reproductive success.
Let us consider some physical examples of information growth.

|. The cosmic expansion generates chemical information. 1 define chemical
information as information that specifies deviations of the relative
abundances of chemical elements from the equilibrium values appropriate
to the prevailing temperature and density. As I discussed in the last
section, the rates of chemical reactions are proportional to a higher power
of the cosmic density than the rate of the cosmic expansion. The cosmic
expansion causes the temperature and density of the cosmic medium, and
hence the equilibrium values of the chemical concentrations, to change
at certain calculable rates. When the density is sufficiently high, the rates
of key equilibrium-maintaining reactions are fast enough to maintain
equilibrium. Eventually, however, the rates of these reactions must fall
below the cosmic expansion rate. The relative concentrations of the
reactants are then frozen in. These considerations are perfectly general;
they hold for weak and nuclear reactions as well as for ordinary chemical
reactions. The chemical composition of the universe is, of course, very
far from equilibrium. The chemical disequilibrium of the sun is the
source of the free energy on which terrestrial life depends. This illustrates
how one kind of order-generating process (the cosmic expansion, leading
to chemical disequilibrium) can give rise to initial conditions in which a

qualitatively different order-generating process (biological evolution) can
occur.

2. The cosmic expansion generates ““morphological” information ( the infor-
mation needed to specify the nonuniformity of the mass density). The
truth of this assertion is obvious under the assumption that the cosmic
mass density was uniform in the limit ¢ — 0. This assumption charac-
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terizes cosmological theories that postulate a cold initial state.!?
Cosmologies that postulate a hot initial state must also postulate initial
nonuniformities. But these presumably’® contain less information than
the cosmic mass distribution that evolves from them.

3. The evolution of an isolated system composed of a large number of
gravitating particles generates information. In such a system the central
density and temperature increase steadily, while the peripheral regions
expand and become less dense. Thus a system of this kind evolves away
from the maximum-entropy state appropriate to its energy, mass, and
radius. A spherical system of gravitating particles confined by a reflecting
spherical wall will evolve toward a stable equilibrium configuration 1f
the ratio of the central density to the surface density in this configuration
is less than a certain critical value. If the ratio exceeds this value, the
equilibrium configuration is unstable and the core will continue to
collapse indefinitely.

Figure 1 illustrates the hierarchical relations among order-generating
processes and the structures and initial conditions they generate. Each
order-generating process creates a new class of initial conditions and
structures, which provide the setting for a new class of order-generating
processes. The figure is not complete. For example, it omits the sub-
hierarchy of dissipative structures.

VII. Spatial Interpretation of Quantal Indeterminacy

The state of any finite portion of the universe is in general a superposition
of eigenstates of a given observable. On the other hand, as we have seen,
the state of the universe itself is a direct product of eigenstates, each
associated with a cell whose dimensions exceed all correlation scales.
This product represents a state in which each eigenstate 1s realized
somewhere; but, by virtue of the Strong Cosmological Principle, it 1s
impossible to say where. Thus the quantal indeterminacy represented by
the statement “It is impossible (in general) to specify which eigenstate of
a particular observable a given cell is in” is equivalent to the statement
“It is impossible to say where a given eigenstate is realized.” Moreover,
the probability that a given eigenstate will be realized in a given cell 1s
equal to the frequency with which that eigenstate is realized in the infinite
assembly of cells that constitutes the universe., Transition probabilities
also admit a spatial interpretation. Thus the statement that a certain
transition has probability p of occurring in a certain time interval means

———
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that during this time interval this transition occurs in a fraction p of the
cells into which we divide the universe (or in a fraction p of the system’s
identical copies distributed throughout the universe).

The present interpretation of quantum mechanics may remind some
readers of the ‘“‘many-worlds™ interpretation,'* in whicli the “‘universe
is constantly splitting into a stupendous number of branches, all resulting
from the measurementlike interactions between its myriads of com-
pnﬁents.”” In the present interpretation, the many worlds are causally
disjoint regions of a single spatiotemporal continuum. In the many-
worlds interpretation, each of the many worlds is equipped with its own
space-time. The multiplicity of realizations in the present interpretation
is not postulated ad hoc, as it is in the many-worlds interpretation, but
is a consequence of the Strong Cosmological Principle and the assump-
tion of initially bounded correlations. These metaphysical and methodo-
logical distinctions are comparatively unimportant, however. The many-
worlds interpretation was put forward as a solution to the problem of
measurement. In the next section we shall see that the present interpreta-
tion of quantum mechanics offers a radically different solution to that
problem.

VIII. Measurement

According to Bohr and to most present-day writers, classical notions
must figure in any careful formulation of the basic principles of quantum
mechanics. As Landau and Lifshitz remark in their well-known text-
book,'® “Quantum mechanics occupies a very unusual place among
physical theories: it contains classical mechanics as a limiting case, yet
at the same time it requires this limiting case for its own formulation.™

Since classical and quantal notions are mutually inconsistent, it is
perhaps not surprising that the quantal theory of measurement, which
treats interactions between classical and quantal systems, should still,
after more than half a century, be a source of conjecture and controversy.

To fix ideas, let us review the main ideas of the theory, as formulated
by von Neumann.'” Let |k) denote the kth eigenket of an observable Q.
and let |k denote the corresponding eigenket of an apparatus designed
to measure Q. A measurement of Q must yield one of its eigenvalues,
and there is a definite probability p, that it will yield the kth eigenvalue.
Thus the state of the system and the apparatus after a measurement of
O is represented by the density matrix
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p= §|!€>|k>pk<k|<él. (12)

But if the system was in the state y before the measurement and if the
measurement did not disturb it, the principle of superposition implies
that the state of the system and the apparatus after the measurement is
represented by

;1k>|£><ﬁ:lw>

with the corresponding density matrix

o =Y |k K |y Cwlky <k|<kKl, (13)

K.k’

which is not the same as (12) unless the initial state was an eigenstate of Q.
Four ways of dealing with this contradiction have been widely discussed.

1. Von Neumann!’ postulated that measurements and measurementlike
processes are not governed by the laws of quantum mechanics but do in
fact convert pure states into mixtures. This postulate represents a kind
of supplementary law serving to join classical and quantum mechanics.

2. Wigner'® suggested that the laws of quantum mechanics apply to all
physical processes, including measurement, but not to certain mental
processes, namely, those in which an observer becomes aware of the
outcome of a measurement. This interpretation preserves the unity of
physics but demands a radical separation between physical and mental
processes. Wigner has defended this separation on philosophical
grounds."”

3. The many-worlds interpretation’® postulates that the “world”—or,
more accurately, an ensemble of equally “real” worlds—is described by
‘4 universal wave function” evolving according to the laws of quantum
mechanics. According to this view, mixtures do not exist. Thus the
contradiction disclosed by the orthodox theory of measurement does not
arise. The many-worlds interpretation explains the observation that
microscopic measurements have definite (though unpredictable) out-
comes by positing that every such measurement splits the world in which
it occurs into a number of distinct worlds, corresponding to individual
branches of the state vector.

But this “explanation,” it seems to me, ignores, rather than resolves,
the difficulty. If the “measurementlike™ process is reversible, as in
. " 5 1 1 : H
Wigner’s example of the double Stern-Gerlach experiment,'” the many-
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worlds interpretation must be false because the individual branches of
the state vector do not then evolve independently. But distinct branches
of the state vector are never strictly independent. Hence the evolution
of the “universal wave function’ can never be accurately represented by
a splitting of worlds.

Of course, the intent of the interpretation was that only irreversible
branching processes should produce a splitting of worlds. But, as Everett
himself clearly perceived, there is no room in the many-worlds interpreta-
tion for the notion of (macroscopic) irreversibility:

This type of irreversibility [thermodynamical irreversibility] . .. arises
from a failure to separate ‘“‘macroscopically indistinguishable™ states
into “true” microscopic states. It has a fundamentally different character
from the irreversibility of Process 1 [a “discontinuous change brought
about by the observation of a quantity with eigenstates ¢,, ¢, ..., In
which the state i will be changed to the state ¢; with probability | (1), .:f;jf & 5
which applies to micro-states as well and 1s peculiar to quantum mechan-
ics. Macroscopically irreversible phenomena are common to both classical
and quantum mechanics, since they arise from our incomplete informa-
tion concerning a system, not from any intrinsic behavior of the system.*®

Since the many-worlds interpretation does not apply to reversible
“measurements’” like the double Stern-Gerlach experiment, and ordinary
thermodynamical irreversibility is not an admissible criterion, there would
seem to be no objective way (that does not make a tacit appeal to classical
concepts) of deciding when or whether a splitting into multiple worlds
has occurred.

4. The fourth and now perhaps most widely held view is that measure-
ments and measurementlike processes do not, as von Neumann pos-
tulated, transform pure states of the system plus apparatus into mixtures,
but that they are irreversible (in the ordinary thermodynamical sense).?!
Supporters of this interpretation argue that thermodynamically irrever-
sible processes give rise to pure states that are practically indistinguishable
(rom mixtures: The branches into which the state vector is split by an
irreversible process do not subsequently interfere, at least in practice.
F'or example, the time required to bring about measurable interference
between macrosocopically separated branches of the state vector corre-
sponding to distinct “‘pointer readings” may exceed the age of the uUniverse.
| shall call this the reformed view, to contrast it with the orthodox view.

According to the reformed view, the laws of quantum mechanics apply
{0 measurement as they do to all other physical processes, macroscopic
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as well as microscopic. What, then, distinguishes irreversible from
reversible processes?

Within the conventional framework of quantum mechanics, the
answer to this question must be that given by Peres and Rosen: “As long
as experiments can be performed in which interference effects may show
up, then [the state vector] is a superposition. It becomes a mixture
beginning from the stage at which such experiments become inconceivable.
The striking feature of this approach is that the determination of the
nature of [the state vector] ... has a certain subjective aspect: A poorly
equipped physicist may interpret it as a mixture, while a better endowed
one might still be able to display interference effects.”?’

The key idea in the reformed theory of measurement is to replace
the postulate that measurements destroy information about an isolated
physical system by the definition of measurement as an irreversible process
that does not disturb the state of the system being measured and creates
a correlation between eigenstates of the observable being measured and
macroscopically distinguishable states of the apparatus. Irreversible
processes do not contravene the laws of quantum mechanics, which imply
that the microscopic entropy of an isolated system is constant in time,
because they merely redistribute information. The theory sketched in the
preceding sections of this paper gives an objective meaning, compatible
with the laws of quantum mechanics, to such thermodynamical notions
as irreversibility and the redistribution of information. According to this
theory, the state vector of a complex system that has not been specially
prepared is in general a true mixture. The fact that a poorly equipped
physicist can acquire less information about the state vector of a given
system than his better-equipped colleague has no more to do with the
quality and quantity of the information objectively present in the system
than the ability of a chemist to analyze a given sample has to do with the
sample’s chemical composition.

It may lend concreteness to the preceding remarks to consider in a
little more detail the connection between modern quantal theories of
thermodynamic irreversibility and the Strong Cosmological Principle.
Let p denote the density matrix of a dynamical system. The Gibbs entropy
of the system is

H;, = —kTr{plnp}, (14)

where k denotes Boltzmann’s constant and Tr{ | denotes the diagonal sum
(which is the same in all representations). In the diagonal representation
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p=7Y|n>p, {n|, (15)
so that
Hg = —k) p,Inp,. _ (16)

In another representation, labeled by the quantum numbers o, the
diagonal elements of p still represent occupation probabilities,

(a|play = Y |[<e|n>|*p, = pas (17)

but the Gibbs entropy [whose value is still given by (16) | depends also
on the off-diagonal matrix elements of p and on the matrix elements of
Inp:

H,=—kTr{plnp} = —k Z {a|p|a><a’|In ploc. (18)

We may, however, associate a different kind of entropy,

HB= _kzpalnpaw {19)

with the diagonal part of the density matrix in the o representation.
Hy is a generalization of the Boltzmann entropy and, under appropriate
conditions, to be discussed, satisfies an H theorem. The Gibbs entropy,
on the other hand, is constant in time.

Because the function —xInx is convex, it follows from (17) and a
well-known inequality for convex functions that

Hy > Hy, (20)

with equality only if the density matrix is diagonal in the o representation.
We may therefore write

He=Hy— I, (21)

where I, is a positive quantity. It represents the information associated
with the relative phases of the amplitudes {a|n).

We define the information associated with the probability distributions
{p,t and {p,} in the usual way:

[ = 'ffmu:l o ] ;f‘ {22}

where H,,,, denotes the maximum value of the entropy consistent with

given constraints. Then (21) becomes
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I =1y + 1, (23)

which expresses the Gibbs (total) information as the sum of information
associated with the occupation numbers of the states o and information
associated with the relative phases of the amplitudes {aln).

The quantal H theorem, due essentially to van Hove,?” states that
the entropy Hj is a nondecreasing function of the time if (a) [, =0
initially, and (b) the interaction Hamiltonian of the system satisfies
certain mathematical conditions. Van Hove showed that condition (a) 18
necessary and sufficient for the set of probabilities {p,} to be related to
their initial values by a generalized (non-Markoffian) master equation.®?
In other words, if information about the relative phases of the basis
vectors is initially absent, it is permanently irrelevant to the evolution
of the occupation probabilities represented by the diagonal elements of
the density matrix.

In the present context it is the first condition, the initial vanishing of
the off-diagonal elements of the density matrix, that concerns us. The
assumption raises two questions: What dictates the choice of the o
representation (in which a|pla’) = 0(2,2")ps) for a given physical system?
And what objective meaning, if any, attaches to the assumption that in
this representation information about the relative phases of the basis
vectors is initially absent?

The present theory answers these questions. As we saw In section V,
a complete description of the universe could in principle contain a very
small quantity of information. The subsequent evolution of the universe
generates statistical information (section V). At the same time, informa-
tion is continually flowing (irreversibly) from low-order correlations,
where it is present initially, to higher-order correlations.

Thus it is possible, at least in principle, to calculate the cosmic density
matrix at any moment, and hence to decide whether a given set of necessary
conditions for irreversible information flow are actually satisfied by a
given physical system. Moreover, the absence or presence of specific
kinds of information is an objective property of the universe. Whether
or not a given system exhibits irreversible behavior does not depend on
what we know about it but on its history.

‘According to the present theory, the universe is in a mixed state,
described not by a state vector but by a density matrix that contains only
the kinds of information present in the initial data or generated during the
course of cosmic evolution. The form of this density matrix exhibits the
essential unity of quantum mechanics and thermodynamics. Statistical
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thermodynamics may be defined as the study of the statistical aspect of
the cosmic density matrix.

IX. Quantum Mechanics and Reality

In 1949 Einstein summarized years of thought on the physical interpreta-
tion of quantum mechanics in the following words: “One arrives at very
implausible theoretical conceptions, if one attempts (o maintain the thesis
that the statistical quantum theory is in principle capable of producing a
complete description of an individual physical system. On the other hand,
those difficulties of theoretical interpretation disappear, if one views the
quantum-mechanical description as the description of ensembles of
systems.” 24

The conclusions of the present paper strongly support this view of
quantum mechanics. But the present theory goes further. It offers an
explanation of why quantum mechanics cannot give a complete descrip-
tion of individual physical systems: If a complete description of the
universe were to contain complete descriptions (in Einstein’s sense) of
individual systems, it would necessarily define preferred positions 1n
space. A theoretical description that is invariant under spatial translation
and rotation is necessarily a quantal description (a classical description
would have preferred positions and directions) and necessarily describes
ensembles rather than individual systems. The statistical character of the
description is a consequence of its symmetry; if God plays dice, it is
because He doesn’t play favorites.
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