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of lanthanum is 7/2, hence the nuclear magnetic 
moment as determined by this analysis is 2.5 
nuclear magnetons. This is in fair agreement 
with the value 2.8 nuclear magnetons deter­
mined from La III hyperfine structures by the 
writer and N. S. Grace.9 

9 M. F. Crawford and N. S. Grace, Phys. Rev. 47, 536 
(1935). 
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In a complete theory there is an element corresponding 
to each element of reality. A sufficient condition for the 
reality of a physical quantity is the possibility of predicting 
it with certainty, without disturbing the system. In 
quantum mechanics in the case of two physical quantities 
described by non-commuting operators, the knowledge of 
one precludes the knowledge of the other. Then either (1) 
the description of reality given by the wave function in 

1. 

ANY serious consideration of a physical 
theory must take into account the dis­

tinction between the objective reality, which is 
independent of any theory, and the physical 
concepts with which the theory operates. These 
concepts are intended to correspond with the 
objective reality, and by means of these concepts 
we picture this reality to ourselves. 

In attempting to judge the success of a 
physical theory, we may ask ourselves two ques­
tions: (1) "Is the theory correct?" and (2) "Is 
the description given by the theory complete?" 
It is only in the case in which positive answers 
may be given to both of these questions, that the 
concepts of the theory may be said to be satis­
factory. The correctness of the theory is judged 
by the degree of agreement between the con­
clusions of the theory and human experience. 
This experience, which alone enables us to make 
inferences about reality, in physics takes the 
form of experiment and measurement. It is the 
second question that we wish to consider here, as 
applied to quantum mechanics. 

quantum mechanics is not complete or (2) these two 
quantities cannot have simultaneous reality. Consideration 
of the problem of making predictions concerning a system 
on the basis of measurements made on another system that 
had previously interacted with it leads to the result that if 
(1) is false then (2) is also false. One is thus led to conclude 
that the description of reality as given by a wave function 
is not complete. 

Whatever the meaning assigned to the term 
complete, the following requirement for a com­
plete theory seems to be a necessary one: every 
element of the physical reality must have a counter­
part in the physical theory. We shall call this the 
condition of completeness. The second question 
is thus easily answered, as soon as we are able to 
decide what are the elements of the physical 
reality. 

The elements of the physical reality cannot 
be determined by a priori philosophical con­
siderations, but must be found by an appeal to 
results of experiments and measurements. A 
comprehensive definition of reality is, however, 
unnecessary for our purpose. We shall be satisfied 
with the following criterion, which we regard as 
reasonable. If, without in any way disturbing a 
system, we can predict with certainty {i.e., with 
probability equal to unity) the value of a physical 
quantity, then there exists an element of physical 
reality corresponding to this physical quantity. It 
seems to us that this criterion, while far from 
exhausting all possible ways of recognizing a 
physical reality, at least provides us with one 
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such way, whenever the conditions set down in 
it occur. Regarded not as a necessary, but 
merely as a sufficient, condition of reality, this 
criterion is in agreement with classical as well as 
quantum-mechanical ideas of reality. 

To illustrate the ideas involved let us consider 
the quantum-mechanical description of the 
behavior of a particle having a single degree of 
freedom. The fundamental concept of the theory 
is the concept of state, which is supposed to be 
completely characterized by the wave function 
t/', which is a function of the variables chosen to 
describe the particle's behavior. Corresponding 
to each physically observable quantity A there 
is an operator, which may be designated by the 
same letter. 

If \p is an eigenfunction of the operator A, that 
is, if 

+'=A+ = ai, (1) 

where a is a number, then the physical quantity 
A has with certainty the value a whenever the 
particle is in the state given by \p. In accordance 
with our criterion of reality, for a particle in the 
state given by \p for which Eq. (1) holds, there 
is an element of physical reality corresponding 
to the physical quantity A. Let, for example, 

'J/ = 0(2iri/A)?)o.T (2) 

where h is Planck's constant, po is some constant 
number, and x the independent variable. Since 
the operator corresponding to the momentum of 
the particle is 

we obtain 
p = (h/2iri)d/dx, (3) 

t'=p*l,=(h/2in)dip/dx=poi'. (4) 

Thus, in the state given by Eq. (2), the momen­
tum has certainly the value po. It thus has 
meaning to say that the momentum of the par­
ticle in the state given by Eq. (2) is real. 

On the other hand if Eq. (1) does not hold, 
we can no longer speak of the physical quantity 
A having a particular value. This is the case, for 
example, with the coordinate of the particle. The 
operator corresponding to it, say q, is the operator 
of multiplication by the independent variable. 
Thus, 

q\p — x\l/^a\p. (5) 

In accordance with quantum mechanics we can 
only say that the relative probability that a 
measurement of the coordinate will give a result 
lying between a and b is 

P(a,b)= I Wdx= I dx = l (6) 

Since this probability is independent of a, but 
depends only upon the difference b — a, we see 
that all values of the coordinate are equally 
probable. 

A definite value of the coordinate, for a par­
ticle in the state given by Eq. (2), is thus not 
predictable, but may be obtained only by a 
direct measurement. Such a measurement how­
ever disturbs the particle and thus alters its 
state. After the coordinate is determined, the 
particle will no longer be in the state given by 
Eq. (2). The usual conclusion from this in 
quantum mechanics is that when the momentum 
of a particle is known, its coordinate has no physical 
reality. 

More generally, it is shown in quantum me­
chanics that, if the operators corresponding to 
two physical quantities, say A and B, do not 
commute, that is, if AB.j^BA, then the precise 
knowledge of one of them precludes such a 
knowledge of the other. Furthermore, any 
attempt to determine the latter experimentally 
will alter the state of the system in such a way 
as to destroy the knowledge of the first. 

From this follows that either (1) the quantum-
mechanical description of reality given by the wave 
function is not complete or (2) when the operators 
corresponding to two physical quantities do not 
commute the two quantities cannot have simul­
taneous reality. For if both of them had simul­
taneous reality—and thus definite values—these 
values would enter into the complete description, 
according to the condition of completeness. If 
then the wave function provided such a complete 
description of reality, it would contain these 
values; these would then be predictable. This 
not being the case, we are left with the alter­
natives stated. 

In quantum mechanics it is usually assumed 
that the wave function does contain a complete 
description of the physical reality of the system 
in the state to which it corresponds. At first 
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sight this assumption is entirely reasonable, for 
the information obtainable from a wave function 
seems to correspond exactly to what can be 
measured without altering the s ta te of the 
system. We shall show, however, t ha t this as­
sumption, together with the criterion of reality 
given above, leads to a contradiction. 

infinite series (7) is reduced to a single term 

The set of functions u„(xt) is determined by 
the choice of the physical quant i ty A. If, instead 
of this, we had chosen another quant i ty , say B, 
having the eigenvalues 61, b%, bz, • • • and eigen-
functions Vi(x{), Vz(xi), Vz(xi), • • • we should 
have obtained, instead of Eq. (7), the expansion 

For this purpose let us suppose t h a t we have 
two systems, I and I I , which we permit to inter­
act from the t ime t = 0 to t = T, after which t ime 
we suppose tha t there is no longer any interaction 
between the two parts . We suppose further t h a t 
the states of the two systems before t = Q were 
known. We can then calculate with the help of 
Schrodinger's equation the s ta te of the combined 
system I + 11 at any subsequent t i m e ; in par­
ticular, for any t>T. Let us designate the cor­
responding wave function by M*. We cannot, 
however, calculate the s ta te in which either one 
of the two systems is left after the interaction. 
This, according to quan tum mechanics, can be 
done only with the help of further measurements, 
by a process known as the reduction of the wave 
packet. Let us consider the essentials of this 
process. 

Let a 1, 02, a-3, • • • be the eigenvalues of some 
physical quant i ty A pertaining to system I and 
Wi(xi), Ui(xi), ut(xi), • • • the corresponding 
eigenfunctions, where Xi s tands for the variables 
used to describe the first system. Then ^ , con­
sidered as a function of x\, can be expressed as 

•*-(xj, x2) = X) <Ps(xz)v,(xi), (8) 

* 0 l , Xi)= T, lpn{Xl)un(Xl), (7) 

where x2 s tands for the variables used to describe 
the second system. Here ^n(#a) are to be regarded 
merely as the coefficients of the expansion of ^ 
into a series of orthogonal functions un(xi). 
Suppose now tha t the quan t i ty A is measured 
and it is found tha t it has the value a*. I t is then 
concluded tha t after the measurement the first 
system is left in the s tate given by the wave 
function uk(xx), and tha t the second system is 
left in the state given by the wave function 
tkXxi). This is the process of reduction of the 
wave packe t ; the wave packet given by the 

where <p„'s are the new coefficients. If now the 
quant i ty B is measured and is found to have the 
value br, we conclude t ha t after the measurement 
the first system is left in the s tate given by vr(xi) 
and the second system is left in the s ta te given 
by <pr(Xi). 

We see therefore tha t , as a consequence of two 
different measurements performed upon the first 
system, the second system may be left in s tates 
with two different wave functions. On the other 
hand, since a t the t ime of measurement the two 
systems no longer interact, no real change can 
take place in the second system in consequence 
of anything tha t may be done to the first system. 
This is, of course, merely a s ta tement of what is 
meant by the absence of an interaction between 
the two systems. Thus, it is possible to assign two 
different wave functions (in our example \pk and 
<pr) to the same reality (the second system after 
the interaction with the first). 

Now, it may happen tha t the two wave func­
tions, ij/k and <pr, are eigenfunctions of two non-
commuting operators corresponding to some 
physical quantit ies P and Q, respectively. T h a t 
this may actually be the case can best be shown 
by an example. Let us suppose t ha t the two 
systems are two particles, and tha t 

/

CO 

eUrtlhHn-xt¥a»)Pdpt 

— m 

(9) 

where Xo is some constant . Let A be the momen­
tum of the first par t ic le ; then, as we have seen 
in Eq. (4), its eigenfunctions will be 

up(xi)=ei2T i!h)pxi (10) 

corresponding to the eigenvalue p. Since we have 
here the case of a continuous spectrum, Eq. (7) 
will now be written 
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/

CO 

tl/p(xi)up(xi)dp, (11) 

where 
i/'p(x2) = e~t-2lTilh) (a,*-a;^ ". (12) 

This \pv however is the eigenfunction of the 
operator 

P=(h/2iri)d/dx2, (13) 

corresponding to the eigenvalue — p of the 
momentum of the second particle. On the other 
hand, if B is the coordinate of the first particle, 
it has for eigenfunctions 

Vx(xi) = 8(Xi — x), (14) 

corresponding to the eigenvalue x, where 
S(xi — x) is the well-known Dirac delta-function. 
Eq. (8) in this case becomes 

/

CO 

(Px(x2)vx(xi)dx, (15) 

- c o 

~co 

<Px(x2)= I e^*1 

where 

ilh) (x—Z2+zo)p, dp 

= h8(x — Xi-\-Xo). (16) 

This <px, however, is the eigenfunction of the 
operator 

Q=x2 (17) 

corresponding to the eigenvalue x-\-x0 of the 
coordinate of the second particle. Since 

PQ-QP = h/2-Ki, (18) 

we have shown tha t it is in general possible for 
\pk and <pr to be eigenfunctions of two noncom-
muting operators, corresponding to physical 
quantit ies. 

Returning now to the general case contem­
plated in Eqs. (7) and (8), we assume tha t \j/k 
and <pT are indeed eigenfunctions of some non-
commuting operators P and Q, corresponding to 
the eigenvalues pk and qr, respectively. Thus, by 
measuring either A or B we are in a position to 
predict with certainty, and without in any way 

disturbing the second system, either the value 
of the quant i ty P ( that is pk) or the value of the 
quant i ty Q ( that is qr). In accordance with our 
criterion of reality, in the first case we must 
consider the quant i ty P as being an element of 
reality, in the second case the quant i ty Q is an 
element of reality. But, as we have seen, both 
wave functions \j/k and <pr belong to the same 
reality. 

Previously we proved tha t either (1) the 
quantum-mechanical description of reality given 
by the wave function is not complete or (2) when 
the operators corresponding to two physical 
quantit ies do not commute the two quanti t ies 
cannot have simultaneous reality. Star t ing then 
with the assumption tha t the wave function 
does give a complete description of the physical 
reality, we arrived a t the conclusion tha t two 
physical quantit ies, with noncommuting oper­
ators, can have simultaneous reality. Thus the 
negation of (1) leads to the negation of the only 
other alternative (2). We are thus forced to 
conclude tha t the quantum-mechanical descrip­
tion of physical reality given by wave functions 
is not complete. 

One could object to this conclusion on the 
grounds tha t our criterion of reality is not suf­
ficiently restrictive. Indeed, one would not arrive 
a t our conclusion if one insisted tha t two or more 
physical quantit ies can be regarded as simul­
taneous elements of reality only when they can be 
simultaneously measured or predicted. On this 
point of view, since either one or the other, but 
not both simultaneously, of the quanti t ies P 
and Q can be predicted, they are not simultane­
ously real. This makes the reality of P and Q 
depend upon the process of measurement carried 
out on the first system, which does, not disturb 
the second system in any way. No reasonable 
definition of reality could be expected to permit 
this. 

While we have thus shown tha t the wave 
function does not provide a complete description 
of the physical reality, we left open the question 
of whether or not such a description exists. We 
believe, however, t ha t such a theory is possible. 


