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T'lhe Physi'cal Inteaipretation of the Quantum Dynamics. 
'By P. A. M. DIRAC, St. John's College, Cambridge; Institute for Theoretical 

Physics, Copenhagen. 

(Comnmutrnicated by R, E. Fowler, F.R.S.-Received Decemnber 2, 1926.) 

? I. Introduction and Summary. 
The new quantum mechanics consists of a scheme of equations which are 

'very closely analogous to the equations of classical mechanics, with the funda- 
mental difference that the dynamical variables do not obey the commutative 
law of multiplication, but satisfy instead the well-known quantum conditions. 
It follows that one cannot suppose the dynamical variables to be ordinary 
numbers (c-numbers), but may call them numnbers of a special type (q-numbers). 
The theory shows that these q-naibers can in general be represented by matrices 
whose elements are c-numabers (functions of a time parameter). 

When one has performed the calculations with the q-numbers an:d obtained 
all the matrices one wants, the question arises how one is to get physical results 
from the theory, i.e., how can one obtain c-numbers from the theory that one 
can compare with experimental values ? Hitherto this has been done with 
the help of a num-ber of special assumptions. Inl Heisenberg's original matrix 
m-iechanics it was assumed that the elements of the diagonal matrix that repre- 
sents the enetgy are the enorgy levels of the system, anid the elements of the 
mnatrix that represents the total polarisation, which are periodic functions of 
-the time, deter-mine the frequencies and intensities of the spectral lines in 
analogy to the classical theory. Schrbdinger's wave representation of the 
quantum mechanics has provided new ways of obtaining physical results from 
the theory, based on the assumrption that the square of the amplitude of the 
wave function can in certain cases be interpreted as a probability. From this 
ssulmption one can, for instance, work out the probability of a transition being 

produced in a systemn (or the number of transitions produced in an assembly 
of like systems) by an arbitrary external perturbing force,* and can thuLs, by 
supposli g the perturbation to consist of incident radiation, obtain directly 
Einstein's B coefficients. Againi in Born's treatment of collision problemst 
it is assumed that the square of the amplitutde of the wave fLnction scattered 

X See Schrodinger, 'Ainn. d. Phlys.,' vol. 81, p. 112 (1926); also ? 5 of the author's paper 
Roy. Soc. Proc.,' A, vol. 1:2, p. 661 (1926). 
- Born, 'Z. f. Ph'ysik,' vol. 37, p. 863 ; vol. 38, p. 803 (1926). 
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622 P. A. :1M. Dirac. 

in any direction determines the probability of the ,colliding electron (or other 
body) being scattered in that direetion. 

Recently Heisenberg has obtaine(id anioter point of conttact -between the 
theory and experiment? of a somnewhat dcif erent nature.* If one considers 
the problem of -two atoitoic systemQs in resoniance, i.e., witlh energy pulsating 
fromi one to the other, one can :fiiiad the time mnean of the energy of one of them, 
by assuming this time nmean. to be given by a diagonal element, of the matrix 
that represents the energy of that systenm. Siniilarly one can find the time 
mean of the square of its eniergy, antd of the cutbe of its energy, and so on. 
Heisenberg lhas shiown that t,hese calculated time myieans are just wvhat one would 
expect from. the assumpltion that thle energy changes discontinuously from one 
quantised value to another. The theory can tlhus be considered to slhow that 
the energy actually does change discontinuously fromn one quanitised value to 
another, and it enables onie to calculate the fraction of the total time during 
which the energy has any part:icular value, but it can give no information 
about- the times of the transitions. 

This result is capable of wide extensions. Tt can be applied to any dynamical 
system, not necessarily one composed of two parts in resonance with one another, 
and to any dynamical variable, n-ot Tnecessarily onie that can take only quantised 
values. One can (disregarding difficulties introduced by degenerationl) calculate 
the time mean of any dynamical variable, y say, for each stationary state of 
the system, and similarly 'the time mean of g2, and of g3, etc. The information 
thus obtained about g regarded as a funietion of the time can be summed up 
by one stating the fraction of the total -time during which g lies between any 
two specified numerical values, g' and y" say. One can say nothing abouLt the 
intervals of time during which this condition is satisfied except the fraction 
they form of the whole time. 

It thus appears that certain qjiestionris that one can ask about the system on 
the classical theory (e.g., the question: For whlat fraction of the total time does 
g lie between two specified val-ues ?) ean be given defirnite unambiguLous answers 
on the quantum theory as well as otn thie classical theory. In the present paper 
a general theory of s-uch questions and the way the answers are to be obtained 
will be worked out. This 'wi-l shEow all thlie plhysical information that one 
canr hope to get from the quatuna dyn mlies, and will prov-ide a general method- 
for obtain ing it, which. can replace all the speeial assumiptions previously used. 
and perhaps go furth-Ler. rTpie qu1estions considered above concerning t;he 
frac-tion of the tota. tire d-ring wlerhi specified co iditionsl hold do not form <a' 

* ar indebted to Dr. Iteiscer4r, fma intormiing me oif hi., remvi-Ats -hefore pu-bli-cazion. 
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Ph,ysical Interpretation of Quantum Dynanics. 623 

suitable starting point for this investigation, because they can be given definite 
answers only for non-degenerate systems, and a system is always degenerate 
when two or more of its first integrals can take continuous ranges of values. 
We shall therefore approach the subject from a more general point of view. 

The general question of classical mechanics can be formulated as follows: 
What is the value of any constant of integration* g of a given dynamical system 
for any given initial conditions, specified by numerical values qro', Pro" say, 
for the initial co-ordinates and momenta qro, Pro ? The dynamical theory 
enables one to express g as a function of the qro, Pro, and one has then only to 
substitute for the qro, pro the numerical values qro', Pro' to obtain the answer 
to the question. On the quantum theory one can also obtain an expression 
for g as a function of the qro, Pro, but the qro and Pro do not now satisfy the 
commutative law of multiplication, so that if one substituted numerical values 
for them the result would in general depend on the order in which they were 
previously arranged. One can thus give no unambiguous answer to the question 
on the quantum theory. 

One cannot answer any question on the quantum theory which refers to 
numerical values for both the qro and the Pro. One would expect, however, 
to be able to answer questions in which only the qro or only the Pro are given 
numerical values, or, more generally, when any set of constants of integration 
tr that commute with one another are given numerical values. If - r are the 
variables cano:nically conjugate to the ir, one would now want to know what 
one can find out about g, considered as a function of the - ,, with these numerical 
values for the ir. It will be shown that one can determine without ambiguity 
the fraction of the whole of n-space for which g lies between any two specified 
numerical values. More generally, if g1, g2 . . . are a set of constants of 
integration that commute with one another, one can determine the fraction 
of the whole of n-space for wh-ich each g, lies between specified numerical values. 
Hence if one is given an assembly of like systems all having the samne numerical 
values for the ,r) and one assumes that they are distributed uniformly over the 
^-~space, one can determine the number of systems having each of their g,'s 
lying between specified numerical values. Questions of this type appear to 
be the only ones to which the quantum theory can give a definite answer, 
and they are probably the only ones to which the physicist requires an answer. 

To answer (uestions in which the i,. are given numerical values, we require 

T The words constant of integration include such quantities as the value of a varying 
co-ordinate or momentum at a specified time t t,. On the quanturm theory such a 
"value " woulc]d be a q-numbcr, tl being, of course, a c-tmber. 
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624 P. A. M. Dirac. 

a scheme of matrices to represent the dynamical variables, whose rows anld 
columns refer to numerical values for the i. In most atomic problems the 
electronis are given to be initially in definite orbits. For such problems one 
would take the r to be the initial values of the action variables Jr (or other 
first integrals that define the orbits), and could then, with the help of the ordinary 
matrix representation, work out the fraction of the w-space for which certain 
specified conditions hold. There are certain problems, however, for which 
the electrons are not initially in definite orbits (e.g., the problem of the inter- 
action of a P-particle emitted by a radio-active atom with the orbital electrons 
of the atom, for which the n-particle is initially in the nucleus). To treat 
such problems we should require a matrix representation of the dynamical 
variables whose rows and columns refer to other constants of integration of the 
system than the action variables, such that the initial conditions can be stated 
by specifying n-umerical values for these constants of integration. (In the 
example of the ,3-particle it would probably be convenient to have the matrix 
rows and columns referring to the co-ordinates of the 3-particle at the time of 
emission, t to, say. We should then be interested only in those rows and 
columns of the matrices that refer to the f-particle being in the nucleus at 
the time t t0, and could calculate the range in which its initial momentum 
must lie in order that any special kind of interaction, specified by numerical 
values for certain constants of integration, may take place. We should thus 
obtain the probability of that kind of interaction, on the assumption that all 
directions of emission are equally probable.) 

We therefore require a theory of the more general schemes of matrix repre- 
sentation, in which the rows and columns refer to any set of constants of integra- 
tion that commuLte, and of the laws of transformation from one such scheme to 
another. This is worked out in ?? 3-5. This theory may be regarded as a 
development of Lanezos's field theory,* the field representation in Lanzeos's 
theory being really the same as a matrix representation with matrices that have 
continuous ranges of rows and columns instead of the usual discrete sets. 

In ? 6 the transformation theory is used in the investigation of the general 
method of obtaiining physical results from the matrix miechanics, and in ? 7 
it is shown that this general method is in agreement with the special assumptions 
previou-sly used. 

? 2. Notatioa. 
In the ordinary matrix mechanics one obtaimis matrices to represent the 

dynamiical variables whose rows and columns refer to stationarv states of the 
- Lanczos, Zeits. f. Phlys.,' vol. 35. p. 81)2 (19-26). 
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Physical ilnterpretation of Quarnturn Dynamics. 625 

system. Thus if oca,, ?2 o are the first integrals of the equations of motion 
(action variables or otherwise) u being the number of degrees of freedom, 
each row or column can be labelled by specified values for all ?C2 ... OCU, say 
OeC1t, 21 ... a,,/, and we may write the elements of the matrix representing any 
diynamical variable g by g (oc', OC 2' ... 0; Occif Xc2" ... oa') or by g (aef cx") for 
brevity. These matrix elements are functions of the time only. In the present 
paper we shall not take relativity mechanics into account, and shall count the 
time variable wherever it occurs as merely a parameter (a c-number). 

The parameters that label the rows and columns of the matrices may take 
either discrete sets of values or all values in certain continuous ranges, or perhaps 
both. It would complicate the formule unnecessarily if we were to write them 
so as to take both possibilities into account. The case with the continuous 
ranges of values is the more general and typical one. We shall therefore write 
all our form-ula as though these parameters can take only continuous ranges of 
values, it beinig understood that the necessary chainges have to be made when 
the discrete sets occur. The matrix law of multiplication will now read 

ab (o(' a") a (o' o(c"') d al"' . b (o".. oc), 

where dac.' imeans dal"' . dOC2"' ... doc,"', and the range of integration is over 
all the values of the oc,""s that label rows and columns of the matrices.* 

One cannot go far in the developmient of the theory of matrices with con- 
tinuous ranges of rows and columns wit-hout needing a notation for that function 
of a c-number x that is equal to zero except when x is very small, and whose 
integral tlrough a range that contains tlhe point x 0 O is equal to unity. We 
shall use the symbol a (x) to denote this function, i.e., 8 (x) is defined by 

(x) == 0 when x X 0, 
and 

.00 

I x8(x)_. 

Strictly, of course, a (x) is not a proper function of x, but can be regarded only 
as a limit of a certain sequence of functions. All the same one can use 8 (x) 
as though i-t were a proper function for practically all the purposes of cluantum 
mechanics without getting incorrect results. One can also use the differential 
coefficients of a (x), namely 8' (x), a" (x) ... , which are even more discon- 
tinuous and less " proper " than a (x) itself. 

* Whenever the limits of integration of an integral are not specified, the whole rance of 
the parameter that is used for labelling matrix rows and columns is to be understood. 

VOL. CXIII.--A. 2 u 

This content downloaded from 128.103.149.52 on Thu, 1 Aug 2013 16:17:26 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


626 P. A. Al. Dirac. 

A few elementary properties of these functions will now be given so as not 
to interrupt the argument later. We can obviously take (- x) _ (x), 
3' (- x) - --' (x), etc. The condition 8 (x) 0 except when xO may be 
expressed by the algebraic equation x 8 (x)( 0. [This equation, together with 
the equation a (x) . x 0 O, can be used in the definition of a (x) when x is a 
q-number or matrix.] If f (x) is any regular function of x and a is any c-number, 
we have 

"00 

f (x) a (a -- x) dx f (a),(l 
oo 

so that the operation of multiplying by a (a - x) and integrating with respect 
to x is equivalent to the operation of substituting a for x. Again we have, by 
integration by parts 

00 f (x) a (a -x) dx - -f (x) a (a --- x) 4- 00+ f (x) a (a --- x) dx =f '(a), 
(1') 

since the integrated term vanishes at both limits, and in general 

f (X) 8 (f) (a - x) dx = pc (a), (1) 

so that the operation of multiplying by "') (a -in) and integrating with respect 
to x is equivalent to the operation of diferentiating n times with respect to i 
and susbtituing a for i. 

We shall now show that, if b is another c-number, 

I (a --x ) 8(x -b)dx _ (a -b). (2) 

If we regard the left-hand side as a function of b and put it equal to b (b), then 
we shall have that (4 (b) is equal to zero when b differs appreciably from a, and 
also 

j| 5(b)db 8 (a - )dx ) d-xb)db= 
CO '. -r 0-~ 3 

Hence + (b) has all the properties of 8 (a--b) and may be put equal to 8 (a-b). 
We should have obtained equation (2) if we had put f (x) equal to a (x - b) in (1). 
This is thus a case in which one can use 8 (x-b) as though it were a regular 
function of x without getting a wrong result. Anot;her such case is the putting 
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of f (x) equal to 3 (x -b), or, more generally, 8(n) (x -b), in (1'), leading to the 
equations 

- 8'(a - x) 8 (x - b) dx -8'(a -b), (2) 
_ 00 

and 
_00 
- 0 

' (a - x) 8()( - b) dx ~' 8(-1 (a - b). (2) 

Equation (2') can be verified independently by the partial differentiation of (2) 
with respect to a, and then (2") can be verified by the partial differentiation 
of (2') n times with respect to b. 

From (1') if we takef (x) x and a 0, we get 

i|o -x 8'(x) dx-1. _00 

But -x 8' (x), considered as a function of x, vanishes except when I x 1 is very 
small. Hence - x 8' (x) has all the properties of 8 (x), and we can write 

-x 8' (x) _ (x). (3) 

When using :matrices with continuous ranges of rows and coluinuns, we need 
the function 8(x) to express the elements of the unit matrix. The unit matrix 
must by definition be such that wlhen multiplied by any imatrix y the product 
is equal to that matrix, i.e., we miust have 

fI (Ooet' i) dci" . y (c"'') y (ai"). 

We therefore see that 

( ) 8 (X 1 ) * 8((2 (X 2 
... 

* 8 (or - at )- ( -- ', 

say, for brevity. The general diagonal matrixf (oc) has elementsf (oc') . 8 (ci' --c"). 
We shall call the quantities f (x') the diagonal elements of this i- atrix. 

? 3. The Transformation Equations. 
The solving of a proble[n in Heisenberg's matrix mechanics consists in finding 

a scheme of matrices to represent the dynamical variables, satisfying the follow- 
ing conditions : 

(i) The quantum conditions, q,p, --- p.q. = ih, etc. 
(ii) The equations of motion, gH - Hg = ihg, or if g involves the time 

explicitly gH - H:g + ih aglat -ih. 
(iii) The matrix representing the Hamiltonian H must be a diagonal nmatrix. 
(iv) The matrices representing real variables must be Hermitian. 

2 u 2 

This content downloaded from 128.103.149.52 on Thu, 1 Aug 2013 16:17:26 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


623 P. A. M. Dirac. 

The scheme of inatrices that satisfies these conditions is not, in general. 
unique. If to each of the matrices, g say, we apply the canonical transformation 

G =bgbt-, (4) 

where b is any matrix, the new matrices G will satisfy all the algebraic relations 
that the original ones did; in particnlar they will satisfy the quantum conditions. 
Also, if the elements of the matrix b are not functions of the time, so that we 
have G = b4b`1, the new rniatices will satisfy the eqnLations of motion. Further, 
if b comimiu;tes wvith H, the new inatrix representing the Hamiltonian will be a. 
diagonal matrix, and if in addition the elements of the matrices b and b-1 satisfy 
the condition that b ('o") and b1 (a"a') are conjugate imnaginaries, each matrix 
G will be Hermitian when the corresponding imatrix g is Hermitian. Thns whe:n 
these conditions are satisfied the nevw inatrices will satisfy conditions (i) to 
(iv), and will be jnst as good as the original ones -for representing the dynamical 
variables. We shall work out the thecory of these tranisformations, and also 
of the mznore general kind of tnr-nsformat-iorl to a schene of matrices th at need 
satisfy o-nil-y conditions (i) and (ii), which mue ans that b and b1 need satisfy only 
the conditions that their matrhx elementss do not involve the time t. 

Equation (4) nay be written 

'ti)---J!^6'z~ ~ ~~(1 )' (I2 ',t(4 o- (X(4)2 . r 

When we make a transformation of this kind, we can at the same time make 
any permnuntation of the rows of the new matrices G and the same pernmutation 
of their colum nus, without interfering with any of the conditions (i) . . . (iv) 
that they satisfy. Thtere is thus no one-one correspondence between the rows and 
columns qf-the new matrices and those qf the original matrices. The notation 
used in equation (5) is unsatisfactory because it implies that there is such a 
one-one correspondence, the same label a' or (oc1'o2' . X11/) being used to 
specify a row and column both of the matrices G and of the matrices g. We 
therefore modify the no-otation and write equation (5) thuls 

G ( i*' t;0 *'0b/--G ('" 
b (Va'5) doc' v g (oc'oc") (la".' b -1( tw) (5,) 

where t1he new param eters i' are quite unconnected with the a."s. The 

l"s may, in fact, take quite difierent ranges of values from the a."s, or one couldc 
even have the i"s taking only discrete sets of values while tlle ." s cani take 

contmineus ranges of values, or vice versa. 
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Physical Inte'rpretation of Qaantumn Dynamics. 629 

The question now arises as to how one is to label the rows and columns of the 
new matrices G, i.e., how is one to assign to each row and corresponding column 
a set of numerical values for the parameters gr' To do this in a reasonable 
manner one must find those functions of the dynamical variables, 0.' 02 ... Ih 

say, that are diagonal matrices in the new schemne of matrix representation, 
and then assign to each row and corresponding column the value i,' of the 
diagonal element lying in that row and column of each br The labelling is 
thus carried oult so as to make the ir have the matrix elemnents 

gr (44 ) i 8 (;;t 4 ) 8(02' __2 ) - i t -?8(: 0 n(6) 
say. The dynamnical variables gr are used in the labelling of the rows and 
columns of the new matrices in exactly the same way in which the dynamical 
variable oc, were used in the labelling of the rows and columns of the original 
matrices. 

The ;r must be constants of integration of the system, since their matrix 
elements do not involve t. Also they mutst commute with one another, since 
diagonal matrices always commute. The ir therefore form a set of canonical 
co-ordinates, and they will have a set of canonically conjugate momenta . 
q, say. 

The matrices b and b-1 satisfy the relations bb-1 I and b--'b _ 1, or 

fb (Voc') doc"'. b- (1 )=8( 
d~~~~~~~~~~~~~~~~~~~~~~~~d and 

b (o'i') di' . b (V'") o -"). 

The matrix elements b (i'oc') and b-1 (oc'i') thus form two muLtually orthogonal 
and normalised systems of functions, either if they are regarded as functions 
of the oc"s specified by values for the parameters i', or if they are regarded as 
functions of the i"s specified by values for the parameters oc'. Any two such 
mutually orthogonal and normalised systems of functions define a transforma- 
tion to a new scheme of matrices that satisfies conditions (i) and (ii). If in 
addition b (i'oc') and b-1 (oc'i') are conjugate imaginaries, the new scheme of 
matrices will also satisfy condition (iv). In order that the new scheme may 
satisfy condition (iii), the ,'s must commute with H. It would follow, since 
the i's are constants of integration, that they must be functions of the original 
canonical variables q,. and p. that do not involve t explicitly. 

We shall now simplify the notation a little. In equation (5') there is no need 
to use the diflerent symbols g and G to denote the same dynamical variable 
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6 3`0 P. A. iL Dirac. 

represented ac,cording to the old or the new schemes, since the parameters 
(d' and 4" or o' a id oc", as the case may be) show quite definitely to which scheme 
any matrix elenient belongs. WVe shall thereiore uise al-ways the same symbol, 
g for in stance, to denote any particuhar dynamiical variable, and shall write its 
matrix elements according to the different schemes g (0<o(')g WV(t'). Further 
the transformation functions b ( 'o() and b-1- ((' ') are suffciently defined if 
we wvrite them simply as ( '/0<) a id (0</p'). We can thns write equation (5') 
in the simp7lfied form. 

g (W' -, |(0 1/') dOC' * gq (C4'9t1) da" (j/.(5"/) 

We shall inake it a rule always to use nnprimed letters such as g or gr to denote 
dynamical variables (or q-numbers), and primed or miiultiply primed letters 
such as i' and oc" to denote parameters, rep resenting matrix rows and columns, 
which can have specified numerical values, and are c-numbers. 

The transformation equation (5") can equally well be written in any of the 
forms 

J i,dr" (w"/a' =- c 1(' ) da" (o. g("a)g(') g 

say, and (7) 

|(rl/l )dZ/ .( g ) Jg (a' da" (a//i =g(X 

say, corresponding respectively to the matrix equations (written in the old 
notation) 

b-1Gb = g, Gb = bg, b--G =gb-, 

which follow immediately from (4). The expressions g (R'cx') and g (a'Z') intro- 
duced in equations (7) may be regarded as the elements of two matrices that 
represenit the dynamical variable g according to two new more general schemes, 
in which the rows and the columns of the matrices refer to different things. 
There is now no one-one correspondence between the rows and the columns, 
so that a diagonal matrix in these new schemes has no meaning. Tlle matrices 
with elemnents (g'/0<) and (o'/R') are the unit matrices in their respective schemes, 
since equations (7) show that these matrices multiplied by a matrix representing 
an arbitrary q-number g give matrices representing g. 

If we apply successively two canonical transformations with the matrices b1 
and b2, i.e. 

G _byblgb7m, G b - 12Gb21, 
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Physicalc Interpretation of Quantum Dynamics O3 1 

the result is the same as the single transforination with the matrix b2b1, since 

G* = b2b1gbp,-1b2 1_ (b2b1) g (b2b,)-1, 
Translated into the new notation, this theorem is that if one applies successively 
two canonical transformations with the transformation functions (E'/oc'), (oc'/i') 
and (K'/i'), (E'IK/) respectively, the result is the same as the single transforma- 
tion with the transformation functions 

(c/'-(K'lE') dE' ('' 

and 

(a /Pcf, = (X I Al dE' (E'/ Ic). 

? 4. Some Elementary Matrices. 
The matrix elements of the i's are given by equation (6). We must now 

determine the elements of the matrices canonically conjugate to the i's It 

may be shown that the matrices ) whose elements are defined by 

tIr (ii/t)-ih a (El - 
lf) ... 

*i8(ir-l - Er-11 ) * a/ (Erl -ixu - 
* Eil it ......8 u )% (8) 

satisfy the canonical relations 

-rAs sAr 0 O, Er- s -0sEr-, (r 5 s) 
and 

Er-Tfr'- r - ih. 

The first two of the relations are verified very easily with the help of (2') and (2). 
We shall prove the third for the case of a single degree of freedom (u = 1). 
The proof is exactly similar for several degrees of freedom, but is not so easily 
written down. 

For a single degree of freedom we have 

and 
WE~4~") = - ih a3' (4 

so that 

_ i) WEt) = --th i{El a (E -i E1) * 87 ( n"' - ( 

8~ ~~Ei El/)p>, 08 i-')]; dE" 
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632 P. A. Mi. Diiac. 

where the second term has been integrated by parts, and hence 

(i^E;~ ~ ~ ~ { t-^i 80) J ti - ") 
I 

(i Mt) 8t gill >t 

The first terni in thie integral vanishes since (0' -- 8 - i") 0, and the 
second cani be evaluated with the help of (2). We now obtain 

as required. 
The variables canonically conjugate -to the E,. are iot, of course, uniquel. 

determined when the i. are given, because the variables 

m.l + 8Q F /84X, (9) 

where F is any function of the 41, would also be conjugate to the F, w:hen the ii,. 

are. This corresponds to the fact that a m-natrix representation is not uniquely 
determined when one is given the variables i. that are diagonal mr.latrices and 
that label the rows and colum.ns, because one can multiply each row (a') by any 
function f (i') of the parameters F.' and divide the corresponding column by 
the same quantity, as this process does not affect the validity of any matrix 
equation and does not change the diagonal matrices. This process, though, 
does change the mr maatrices de-ined by (8), the new matrices being 

= J ( Esl/ + r (e_ 

Each term in the summation except the term s r vanishes when multiplied. 
by ur (i't"), since the factor (i' i") vanishes when multiplied by the factor 
8 (gs'- i") that occurs in . (i'4") when s : r. On the other hand the factor 

(er' - ') of the terms = r gets multiplied by the factor 8' (i'- g") of r (I'4"), 
and the product is, by equation. (3), just 8 (,.'- ."). We are thus left wi-th 

^n * (ioi/)- (4,i,,) ,7 (5f 0,/ (~T') W ~ j( a g 

uth f 
f(i) a (e 

which agrees with (9) when one takes F = ih log f. 
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Physceil Inteopretation of Quautum. Dynamn3-ics. 633 

For the case of a single degree of freedoli one finds readily, with the help of 
(2"), that the matrix elements of 2 are 

2t ( h)2 a/ i 4 tt)dtt8 it_i, h)2 8//it 

and more generally, by induction, that 

W E0 )=(th)n 8(n )(E- El) 
Hence, if a is an arbitrary c-number, the elements of the matrix ean are given by 

a ( E (ia)-(a)Th 3(ah ) ( ) 3 "( j + ah), 

with the help of Taylor's expansion theoreim. The matrix etn thus contains 
only elements referring to " transitions " in which i changes by tlhe amoount ah, 
as is to be expected. Similar results hold for any number of degrees of freedom, 
but their proofs are not so easily written down. 

? 5. Transformation Theory. 

We shall now consider the transformation between any two matrix schemes, 
(i) and (oa) say, that need satisfy only the conditions (i) and (ii) of ? 3. We have 

71 (V'V") =-ih 8/ (01'- i t).8 (42/S')*- 82 (L/ it'.), 
and hence 

_r 3t-Aa(/o 
't (l ') - j (f) i- " (i/2c') - ih 

with the help of equations (1) and (1'), and in general 

m) (~'o') ~-- ih a 
Again we have 

Er (E cX ) = r' 8/ (V tE"/ ) d<" (E /') E r G4 /o ).7 

and more generally, if f (L) is any function of the r only, 

f(Er) (E la') - jf(Er') 3 ('- i) <d" (E /a/) =f (pr') (E'/or). 

We shall now show that if f (ar, nr) is any function of the Er and their canonical 
conjugates ri, defined by (8), that is rational and integral in the r,, then 

f{ E,, -8 r) (VOC') -t f Er nh a A,1,,)l 
* The application of Taylor's theorem to the function 8 (x) appears to be legitimate, 

because a (x) can be regarded as the limit of a sequence of functions for each of which Taylor's 
theorem holds. 
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634 P. A. M. Dirac, 

so that the elemeiits of the miat rix representing f in the (R'') scheine are given 

by a certain operator operating on the transformnation funCtion. ( I'/o). It is 
sufficient to prove thhat if the theorem is true for any two functions, f_ anLd f2, 
say, then it is true for their sumi f1 a d their product f1 2. The case of 
the sum is trivial. 'or the product we have 

f, (0i.) >7) f2 i' q)( 

=~j Ifi (~i, - / p-) ( 'jcti') d 7'' (X" i"t, / ") dr, f4 () ci' = 0jfl1 4a/7-i7 .> ,)(W/z" Z" (") f i 2 i rn%h ("' 

fi ( A,q - ih aZ$)/0ffi2 (r' d 
-- ih ( l 7 f '), 

as required. In the same way it may be shown that 

The formula (10) provides us with a powerful way of obtaining the matrix 
scheme of representation that makes any specified function of the dynamical 
variables a diagonal matrix. Suppose, for instance, that we are given a function 
of the i's and ~s, F (4r,, f) say, and we want the matrix scheme, (a) say, that 
makes F a diagonal matrix, i.e., we want to have 

F ( Fccc) F(oc') * (i-cc), 

where F (oc') is some function of the single set of parameters oc'. Formula (10) 
shows that 

F (r - th F2-- (i'') F (r, r() 3'( (t'/cx//) doc" . F (cc"oc') 

= :F (cc') (4'/Gcc'). (11) 

This is an ordinary differential equation for (t'/cc'), considered as a function 
of the ,`s, and its different soluitions, when we have found them, are to be 
specified by different values for the parameters ac'. We can then easily obtain 
the (cx) matrix elements of any dynamical variablef (., - 

r) from the formula 

/ (1 1) z : = t z i, i'f - -A) (Ia\ /cc). 
The characteristic values of the differential equation, denoted by F (oc'), are the 
diagonal elements of the diagonal matrix represeniting F. 
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If we take the i's and 's to be the ordinary q's and p's of the system at some 
specified time, and take F to be the Ilamiltonian, then equlation (11) is just 
Schrbdinger's wave equation, and we get Schrddinger's method of solving a 
dynamical problem on the quantunm theory. The eigenfunctions of Schrddinger's 
wave equation are just the transformation functions (or the elements of the trans- 
formation matrix previously denoted by b) that enable one to transform from the 
(q) scheme of matrix representation to a scheme in which the Hamiltonian is a 
diagonal matrix. 

For systems in which the Hamiltonian involves the tim e explicitly, there 
will in general be no matrix scheme with respect to which H is a diagonal 
matrix, since there will be no set of constants of integration that do not involve 
the time explicitly. For such cases we must find a more general wave equation 
than equation (11). We shall first show that if qr, denotes the value of each q, 
at the time t =v, and if the o&'s are a set of constants of integration that can 
be expressed as functions of the q's, p's and t at the arbitrary time t that do not 
involve the parameter T, then 

aT E3 (q7 OC') ihC a- (q7'/X') 

This condition that the cx's must satisfy is such that 
df 

Ifa (OC 0 

-where f is any f-unction of the pT's and q,'s. Further, if f does not involve r 
explicitly, we must have ih df/d-v - f HT - HTf, where HT. denotes the Hamil- 
-tonian at time T. Hence 

(f HT - HTf) (q,'oc') 
df / C, 

ih (qjVc) i h t(q,//cc) d f" . dL (o"' 
d,r I dr 

-ih a (qil/"l) dcc" . f (c4``) X)-ihj (qT'/C4`) . da . f (OC c"cc) 

ih+j f (qT q/) dq7"* (q,"/c') - ihj a (qT'/cc") . dcc" . f (oc"') 

ih jf (q7'q") dq" *11. (q711/') -ihj a (q'/ct) . doc" . f (Z"c'), 

since, whenf is a function of the p,'s and q,'s that does not inivolve T explicitly, 
f (qT' qT") must be independent of v. Again, we have 

(f H, - ITf ) (qT7c'o) --f (q 'q,11) dqT" . II. (q"cc') - (q7'cc") dcc" . f (c"cc'). 
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636 P. A. M. Dirac. 

Comparing these two expressions for (f U - i-f) (q7' ') we see that, Si nce 
they hold for aniy function f, we imust have 

1 (q7' 05 ) = i a (T/t)/ 

If we write t for iv and q for q,, this becomLes 

HI('a') = ih P; ( '7a')/at, 

which can be compared with our previously obtained formu-la 

p (qa') =-i ha(q'/a.')/a'ft'. 
We now have 

H (qrr -ih nrL ,) (q't/cxf) (q7, pr) (q'a') = ih-1 (q'/a'), (12) 

which is Schrbdinger's wavae equation for Hamiltonians that involve the time 
explicitly. 

The equations of a cont-act trans-oxrmiation from a set of canonlical variables 
rr to a set Oy, may, on the classical theory, be put in the simple form 

asIr, = a88i t 8/jar7 (13)- 
where S may be any function of the 4's and o's. Jordan* has shown that the 
transformation equations on the qnantum theory may also be put in this 
form provided S is written in the form 

IS = Ylf (R,-) (arl), 

i.e., all the <'s in the products occurring in S must be in front of all the oc's. 
(It is to be understood that this order inust be preserved when one perform.3 
the partial differentiations.) This result follows very easily frorm the present 
theory. We have 

f it (a,) Wc x ) Jf G::1 riC) d,,"(/c) doc . g (a,.) (a'"V) 
f .a 
. 

Ot c = JJ (v'j) 8 (;i _ i" d d" (i"/a") da" . g (c'") 8 ( " - a)- 

f (zr') g (or/) .V00, 

and thus 
Y2f (ir) g (7r) (VC'a) = I2f (iL') g ( r') . ('/(X') (14) 

for any sets of functionsf (ir) and g (u.). Put 

(R /'') = exp. iS/h, 
* Jordai, 'Z. f. Physik,' vol. 3,8, p. 513 (1926). 
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and suppose S to be written in the form E f (i') g (oc'). We now have 

Br (E'cc') =- ih a // as, (, c ) a(, ( ) 

from (14), provided aS (L, oc)/ar is also written in the form E f (i,) g (c). 
Similarly it may be shown that 

13_;' aS(R cc) i0, 
These equations are just the equations (13) written as relations between matrix 
elements. 

? 6. Physical -Interpretation of the Matrices. 
To obtain physical results from the matrix theory, the only assumption 

one need make is that the diagonal elements of a matrix, whose rows and columns 
refer to the i's say, representing a constant of integration, g say, of the dynamical 
system, determine the average values of the function g (ir, -r) over the whole 
of n-space for each particular set of numerical values for the i's, in the same way 
in which they certainly would in t;he limniting case of large quantum nuumbers. 
Thus if 

g R(V'") - g (i) W i -i" 

when the i"'s are nearly equal to the i"s, we assume that g (i') is the average 
value of g over all n-space when r gr' In the case when the diagonal 
elements of the matrix g are finite without requiring the removal of the factor 
a (i' -"), the corresponding assumption is that the diagonal element g (i'i') 
is equal to (2-th)-1 times the integral of g (ir, Y) over all --space when ir = 

This assumption, of course, enables us to determine also the n-average of 
any function of g, and further, if g1, g2 . . . g,, are a set of g's that commute 
with one another and are independent functions of the i's and n's, we can 
determine the n-average of any function of these g's. (The g's must commute, 
since if they did not we should find, for instance, that the n-average of g1 g2 
was diflerent from that of 92 g9, and we should not know how to interpret 
these averages physically.) This information appears to be all that one can 
hope to be able to get concerning the g's as functions of the 's for specified 
numerical values of the ,'s. 

All this information will be summed up if we can determine the fraction of 
the whole of n-space (or the total volune of n-space, when this fraction is zero) 
for which each g, lies between any two given numerical values, i.e., for which 
gr' I<g, <Yg", say. To do this we must find the matrix that represents 

(9 - g1') * (92 - 92) (g- -ge) *(g - 9'), 
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638 'P M. Dirac. 

say, for brevity. If we then integrate this matrix with respect to the parameters 
g', the result, namely, 

t (g - g') dg,q 

wNill be the matrix which represents that function of the g's that equals unity 

wheng,' <g, <g,", andzerowhen these conditions are not fulfilled. The diagonal 
elements of this matrix will then give the n-average of this function, which 
is just the fraction of the whole of ri-space for which g.' <g <g." (or else they 
will give the integral of this function over the whole of n-space, which is just 
the total volume of -space for which Yr' <g, < gr) 

The matrix a (g - g') must satisfy the conditions* 

(Y2 - gi) a ((g - g') O (' - (Yr -Y) 0 

for each r, and 

(g (y-' ) dg = TI 

It is easily verified that the mnatrix with elelnents 

satisfies these conditions. The last of the conditions is obviously satisfied on 
account of the orthogonal and noriralised properties of the transformation 
functions (i'/g') and (g'j4"), while to prove the others we have 

Yr 8 (gY-g) (W'?") j Yr ( ') dW/' (r/g') (Y'") Yr g (4'gV) (g// 

=Y' *( /q') (g / g) - YA g (Y-Y') (WV')" 

and similarly 
(gY-Y) gY (i'i") = 8 (YY' ) ( O )g 

The volume of n-space for which thle g's lie between their given numerical 
values when = ,-' is now given by 

('/0') dg' (I-qV/SD) 

Ve see at once t-hat this volume vanishes unless the range of integration 
of each gr includes a eharacteristic value of that g, [i.e., a value that occurs 
as a diagonal element of the m-:latrix representing g. in the (g) sche-me of matrix 

* Where q' is used in a formula as a muatrix it mneans thle diaoonal matrix, with elements 
q.' ( 4' ) -j Siq t -- s'), A twhiceh ,represents the c--number q'. 
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representation], since otherwise the transformation functions (i'/g') and 
(g'l/') would vanish throughout the range of integration. This shows that 
the characteristic values of any constant of integration g are the values (quantised 
or otherwise) that this q-number can actually take. (In particular, the character- 
istic values of H are the energy levels of the system.) The symmetry between 
i' and g' in the (i') diagonal element, namely (i'/g') (g'/l'), of the matrix 
a (g - g') enables one to formulate a reciprocal theorem of quantum dynamics, 
applying only to the case when the transformation functions (i'/g'), (g'/l') 
are continuous functions of the i.' and g,.' (which implies that the character- 
istic values of the i, and g, can take continuous ranges of values) as follows:- 
The volume of s-space for which i,i r' and gY' <g,.<gi' + s. is equal to the 
volume of the space of the variables canonically conjugate to the g's for which 
gr/-g' and ir' < r K< ' + Zr, where the Er are small positive c-numbers. 
Either of these volumes is, in fact, just (i'/g') (g'/l') e, where s is the product 
of all the Sr. 

? 7. Comparison with Previous Methods. 
We shall now show that the present method of obtaining physical results 

from the matrix. theory is in agreement with the assumptions formerly used 
that the square of the amplitude of the wave function in certain cases deter- 
mines a probability. Consider a dynamical system which, when unperturbed, 
has a Hamiltonian which does not involve the time explicitly, and to which 
a perturbation is applied, causing an additional term, that does involve the 
time explicitly, to appear in the Hamiltonian. To find the transition pro- 
babilities induced by the perturbation, according to -the former method, one 
must first obtain the eigenfunctions Lo (c'), say, for the unperturbed system, 
(the Gc's being constants of integration of the unperturbed system ), and then the 
eigenfunctions it (oc) say, that satisfy the wave equation of the perturbed 
system and have the initial values tl (oc'). One must then expand the ?t's 
in terms of the +0's thus, 

Qt (cc') = i% (cx") dc" e (c"c'), (15) 

where the coefficients e (cc"cc') are functions of the time only. One then assumes 
that I e (c"cc') 1 2 d(cX" is the probability of an atom initially in the state (oc') 
being at the time t in a state for which each ?Cr lies between cc'," and ccr" + doc.". 

To determine this probability by means of the general method of the present 
paper, we must find the transformation functions (cct'/cco') and (cco'/ct') Which 
connect the values oct of the variables ac (which are assumed to be functions of 
the p's and q's that do not involve the time explicitly) at the time t with their 
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initial values oco, both the cxt's and the oc's being constants of integration of the 
perturbed system if we regard t as a specified time. The required probability 
would then be equal to 

(oc'/oct') dact' (oxt'/o%') (at'/!o0') 1 2 doct' 

if (OCo'/oct') and (OCt'/oco') are conjugate imaginaries, as they have to be if both 
the (at) and the (Xo0) schemes of i atrix representation satisfy the condition (iv) 
of ? 3. If by qt we denote the value of each co-ordinate q at the specified time t, 
we have 

(at laoo) - (qt /oxt') dcxt (aCt /a ). (15/) 

Here (qt'/o1') is the eigenfunction that satisfies the perturbed wave equation 
[of the form (12)], and (qt'/lt'), which depends only on the analytical relations 
connecting the a's with the p's and q's, is the same function of the q,"s and 
ot"s that (q0'/l0') is of the q'o"s (the initial q's) and 4x'os, and is therefore the. 
eigenfimLction for the undisturbed systern written in terms of the variables qt', 
OXt'. Equation (151) is thus the same as equation (15), and the transformnation 
funetions (oct'/ao') are just -the coefficlents of equation (15) [wrhich ought really 
to have been written c (xtYoo')]. Hence the present gene-ral mnethod gives 
results identical witlh those of the previous assumnption. 

Consider now the case of encounters between, say, an electron and an atomnic 
systeim. In Born's treatment of the problem one finds a soluttion of Schr6dinger's 
wave equation consisting of incident plane waves representing the approaching 
electron, which waves are scattered by the atomic system. One then assumes 
that the sqLuare of the amplitude of the wave scattered in any direction deter- 
mines the probability of the electron being scattered in that direction, with an 
energy given by the frequency of the wave. 

To determine this probability by the present method, we must find the trans- 
formration function (PF'/PI') that connects the final components of momentum 
of the electron, PF, with the initial components pj. There is then a probability 
(pf'!pr') dpy' (p/Pi')=J (P'/PI') 12dpF' that the electron will be scattered 
with a momentum lying in the range dpF'. If the co-ordinates of the electron 
at the ti-me t are xt,* we have 

(xt/P / 16L? 

* The set of q-nunmbers xt is understood, of course, to include the co-ordinates oi the 
atomic system, which are not explicitly mentioned, in addition to the co-ordinates xt of 
the incident electron. In the sanme way the pi and 1F must include variables to fix the 
stationary states of the atomic system. 
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Here the transformation functioni (xt'1pI') is the solution of Schrddinger's 
wave equation appropriate for the case of an incident electron with moTientuim 
pl', and is thus the wave function of Born's theory. The function (xt'IpF') 
on the other hand represents emerging waves corresponding to electrons with 
momentum PF' (and also in-going waves that we need not consider). Equation 
(16) thus gives the resolution of the emerging waves in the eigenfunction (xt'1/p') 
into their different components, the amplitudes of the various components 
being I (PF'/PI') The present method is therefore in agreement with Born's 
theory. 

If these problems are regarded from the matrix point of view, one sees that 
the dynamical variables must be capable of being represented equally well by 
matrices whose rows and columnns refer to the initial values of the action variables 
(oc0 or pI in the two cases) or to the final values (0Ct or pF), and the coefficients 
that enable one to transform from the one set of matrices to the other are just 
those that determine the transition probabilities. 

In conclusion it may be mentioned that the present theory suggests a point 
of view for regarding quantum phenomena rather different from the usual ones. 
One can suppose that the initial state of a system determines definitely the 
state of the system at any subsequent time. If, however, one describes the 
state of the system at an arbitrary time by giving numerical values to the 
co-ordinates and momenta, then one cannot actually set up a one-one corre- 
spondence between the values of these co-ordinates and momenta initially 
and their values at a subsequent time. All the same one can obtain a good 
deal of information (of the nature of averages) about the values at the sub- 
sequent time considered as functions of the initial values. The notion of pro- 
babilities does not enter into the ultimate description of mechanical processes; 
only when one is given some information that involves a probability (e.g., that 
all points in --space are equally probable for representing the system) can one 
deduce results that involve probabilities. 

VOL. CXIII.-_A. 2 x 
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