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A B ST R ACT. Even though quantum correlations violate Bell's inequality, they satisfy weaker 

inequalities of a similar type. Some particular inequalities of this kind are proved here. The more 

general case of instruments located in different space-time regions is also discussed in some detail. 

The Einstein-Podolsky-Rosen paradox, Bell's inequality and related theoretical and experimental 

works (see, e.g., the survey [1 ] ) have drawn particular attention to the correlation of two quantum 

observables measured by two space-like separated instruments, each one having a classical para- 

meter (e.g., the orientation of a spin-measuring instrument). The transition probability function, 

i.e., the joint probability distribution of observables in some fixed state of the system, considered 

as a function of the above-mentioned parameters, may violate an inequality such as Bell's and, 

therefore, be unrealizable in classical physics or, more precisely, in all local hidden variables 

theories. We know today that such a transition probability function may nevertheless be realizable 

by suitable quantum measurements. But quantum transition probability functions obey some 

limitations too. The object of the present paper is to investigate these limitations in some particular 

cases. We show in particular that in the case of observables and parameters each having only 

two possible values one may limit oneself to a pair of spin one-half particles as a system and their 

spin components as observables. Correlations that cannot be realized in this way cannot be real- 

ized by any quantum measurements whatsoever. Besides that we attempt to treat the general case 

of an arbitrary set of instruments localized in certain regions of space-time, which form a partially 

ordered set with respect to causal dependence. 

The present paper contains four theorems whose proofs will be published elsewhere and a short 

discussion of their physical content. 

Let an observable A k  be given for each value of a parameter k = 1,...,m, and an observable B t 

for each l = 1 ..... n, each A k commuting with each Bt. The following theorem characterizes all 

possible quantum correlations between A k  and BI (i.e., expectation values Ckl Of AkBl )  in case of 

A k  and Bt having their spectra consisting of two points {-1;  +1 ) or, more generally, included in 

the interval [ -1  ; +1] ; in both cases the answer is the same and is contained in condition (4). 

THEOREM 1. The fol lowing four  conditions f o r  real numbers ekb k = 1 ..... m, l = 1 .... , n are 

equivalent. 

(1) There are a C*-algebra ~r with identity, Hermitian A 1 ..... Am,  B1 ..... B n ~ zg, and a state 

f on ~r such that, for  every k,l, 

A k B I = B I A k ;  -11 <<-Ak <~ 11; --11 ~ B  l ~  11; f ( A k B l ) = c k t .  
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(2) There are Hermitian operators A ~ ..... Am,  B1 ..... B n and a density matrix W (L e. a positive 

operator with trace 1) in a Hilbert space H such that, for  every k,l, 

A k B l = B i A k ;  spectrum (Ak) C [ -1 ;+1] ;  

spectrum (Bl) C [-1; +1] ; Tr(AkBIW ) = Ckl. 

(3) The same as (2) and in addition AN = 11, B~ = 11, Tr(AkW) = 0, Yr(BlW) = O for  every k,I; 

and H =  H1 * H 2 , A k  = A~ 1) | 11(2), Bl = 11 (1) | B} 2 ), where A~l ) ,B t  2 ) are some operators in H1, 

H2, respectively, 11(1 ), 11(2)ar e identity operators; besides that all anticommutators A~I ) A~I 2) + 

A~12 ) A~I1 ) and Bt 2) B ~  ) + Bt 2) B~ 2) are scalar(i.e.,proportional to 11 (1) and 11(2), respectively); 

H, H1,112 are finite dimensional, obeying 

21og2dimHx ~< [ m 
/ m + l  

I n 

2 log2 dim//2 ~< / 
/ n + l  

i f m  is even, 

i f  m is odd, 

i f  n is even, 

i f  n is odd. 

(4) There are unit  vectors x 1 ..... Xm, Y l ..... Yn in a (m+n)-dimensional Euclidean space such 

that, for  every k,l, 

( x k ,  y l ~ = Ckl. 

This theorem shows that for m = n = 2, the operators Ak,  Bl can be chosen as 2 x 2 matrices 

obeying A N = 11, B~ = 11 and having scalar anticommutators; thus, A 1 and A 2 can be interpreted 

as spin components along two different directions of a spin one-half particle; the same holds true 

for B~, B2 with a second particle. It is known in this case that with a suitable choice of directions 

and of the density matrix W one can obtain 

c l l  +c12 +c21 - c22  =Tr((AaBI +A1B2 +A2B1 - A 2 B 2 ) W ) = 2 X / ~  ", 

whereas in the classical case all operators commute, and thus obey 

~IB1 + A I B 2  +A2Bx - A 2 B 2 [ < ~  IB1 +B2 I + IBI -B2 I < 2 .  

It is also known that the right-hand side 2X/~'is the greatest possible value for the particular 
linear combination of spin correlations considered above. According to Theorem 1 this implies 
that the inequality 

011 -I'el 2 +e21 - -c22  ~ 2x/2 

holds for arbitrary quantum observables A l, A2,  Bx and B2 as well. There is also an elementary 
proof, based on a simple but lengthy calculation: 
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1 
A1B I +AIB 2 +A2B 1 -A2B 2 =~-~ (A~ +A~ +B~ +B~) -  

X/-2- 1 ((X/~+ 1)(A1 - e l )  +A2 - B 2 )  2 - 
8 

X/~'- 1 ((X/~+ 1)(A1 - B2)-A2 - B 1 )  2 - 
8 

v ~ ' - I  
- - - ( ( X / ~ +  1) (A2 - B 1 )  +A1 +B2) 2 - 

8 

~/~-- 1 
8 ((x/~+ 1)(A2 + B 2 ) - A 1 - - B 1 )  2 

1 
+B::) <_ 11. 

Theorem 1, via (4), yields comparatively simple (in general quadratic) limitations for the 

quantum correlations Ckl. This simple result is obtained only since the mean values of Ak and 

B l were  left undetermined. If these mean values are also considered to be given, we are able to 

generalize Theorem 1 only for the particular case m = n = 2, and even then the resulting inequali- 

ties are much more complicated. Our results are contained in the following two theorems. 

THE O R E M 2. The following two definitions of a real number M, considered as a function of eight 

arbitrarily given real numbers ~1, a2,/31, ~2,3'1 1,3'12,3'21,3'22, are equivalent. 

(1) M = A1,AS, Uj~l___ ,B2 (sup {X tX E spectrum (Z) }) 

where 

Z=alA1 +a2A2 +/31B1 +/32B2 +711A1B1 +712A1B2 +721A2B1 +3'22A2B2 , 

and A1, A2, B1, B2 are arbitrary Hermitian operators in a Hilbert space obeying 

AkBl=BtA k ; spectrum(Ak) C [-1;+1] ; spectrum (B/) C [-1;+1] 

fork= 1, 2andl= 1,2. 

(2) M = inf m, 

where the infimum is taken over all m > 0 such that, for every complex numbers u, v obeying 
J!ul = 1, Ivl = 1, the following inequalities hoM: 

m4 +/~2 m2 +tt3m +/~4 > 0 ,  

4m 3 +2/~2m +/~3 > 0 ,  

6m2 +#2 > 0 ,  

where 
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#z = - ( l e l  u + If 12 ) -  2(tgl 2 + Ih12), 

#a = - 4 R e ( e g h + f g h ) ,  

/24 = lel 2 Ill: + (Igl 2 - l h l 2 )  2 - 2 R e ( e f g  ~ + ~fh2),  

with 

1 
e = ~ ( u v 7 1 1  - uv712 - uv721 + uv722) ,  

f = ~ - ( U P ~ I  1 -- UFT12 -- ~V-,),21 +f fV722)  , 

1 
g= (ual - 

1 
h (v l - 

V z  

THEOREM 3. The following four  conditions for  eight real numbers al, a2, bl ,  b2, cl 1, el 2, c21, 

c2 2 are equivalent. 

(1) There are a C*-algebra ~ with identity, Hermitian A 1, A 2 , B1, B2 ~ ~r and a state f on 

such that for  k = 1,2 and l = 1,2,  

AkBl  =BIAk; -I1 <_Ak <__ 11; --11 <__Bt <_11; 

f (Ak )  = ak; f (B l )=  bt; f (AkBl )  = Ckl. 

(2) There are Hermitian operators A 1, A2,  B1, B2 and a density matrix W in a Hilbert space H 

such that for  k = 1,2 and l = 1,2,  

A k B  1 = BIAk; spectrum (Ak)  C [-1  ;+1 ] ; 
spectrum (Bl) C [--1;+1] ;Tr (AkW) =ak; 

Tr (BtW) = bl; Tr (AkBthO = Ckl . 

(3) There are Hermitian 2 x 2-matrices A 1 (~), A2 (~'), B1 (~'), B2 (~') and a 4 x 4 density 

matrix W (~), depending in a measurable way on a parameter ~ E [0;1 ],  such that, for  every 

~'E [ 0 ; 1 ] , k =  1 , 2 a n d l =  1,2, 

A~ (/) = 11; B~(~') = ]1; A1 (~')A2 (~') +A2(~)A~ (~) 

and 

B1 (~)B2 (~) + B2 (~)B1 (~) 

are scalar; and 
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1 

I Tr((Ak(~') ~ ll2)W(~'))d~'=ak, 
0 

1 

/ Tr((ll2 | Bz(~')) W(~'))d~" = bl ,  
0 

1 

I Tr((Ak(Ak(~" ) | BI(~))W(~))  d~ = Ckl ,  

o 

where 112 is the 2 • 2 identity matrix. 

(4) For any eight arbitrarily given real numbers a l ,  a2,/31,/32,71 1 ,712,721,722,  

alal  + 0~2a2 +fllbl  +f12b2 +')'11Cll +~'12e12 +")'21c21 +"[22r < M ,  

where M is defined as in Theorem 2. 

We see again that it is sufficient to deal with spin one-half particles; it is necessary now, however, 

to use a randomization by means of a classical random parameter ~" affecting the state of the par- 

ticles and the orientations of the two spin measuring instruments. Most likely our results are not 

generalizable for m > 2 or n > 2. In fact, any two noncommuting operators A 1, A2, obeying 

A~ = 11, A~ = 1, commute with a third operator, namely withAxA2 +A2A1. This is of crucial 

importance for the proofs of Theorems 2 and 3, and has no analog for the three or more operators. 

Now we turn from the case of two space-like separated (e.g., spin measuring) devices to a more 

general case. Of course, our results will be less concrete than those above. We shall treat an 

arbitrary set of local instruments following Kraus [2,3], Hellwig and Kraus [4], and Davies and 

Lewis [51. 

Let C1 ,..., Cn be regions of space-time such that for every different k,l, either any point from C t is 

in the future with respect to any point from Cg (denoted by Ck < el), or vice versa (C 1 < Ck), or any 

two points from Ck and C1, respectively, are space-like separated (C k ~ Q). It is convenient to suppose 

that the numbering of regions conforms to their chronological order, i.e. if k < l then either 

Ck < Q or Ck ~ Q. We shall consider for each k = 1 .... ,n a finite index set S k and an instrument, 

i.e. a family {Ok(Sk))SloES k of  operations Ok(S/c), such that the sum over Sk of the corresponding 

effects is 11. Note that each operation is a mapping O:L~ (H) -~L+(H) of the form OW = 
Z * i AiWAi,  where His  a Hilbert space describing a quantum system, L~ (H) is the set of all positive 

trace-class operators, and Ai are linear operators on H obeying F < I1, where F = ~.A~.Ai is the 
1 

effect corresponding to O. Application of an instrument (O(s) }s~S to the system, being in a 

state with a density matrix W, produces with the probability p(s) = Tr(O(s) W) an output s E S 

and a new state of the system with the density matrix (1/p (s))O(s)W. A combined examination 

of several local instruments requires some further conditions. We suppose that each instrument 

(Ok (sk) } is localized in the corresponding region C k. Then the instruments must obey the fol- 

lowing obvious condition. 
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Condition (.4}. If Ck ~ G,  the instruments (Ok(sic) } and (Ol($1) } commute, i.e., 

01r162 W = Ol(Sl)Ok(slr ) ~1 

E for every sk ESk,  st ESI,  W L~ (H). 

A combined application of all instruments (Ok(sk) } to the density matrix W produces with 

the probability 

p( {s k }) = Tr(On(Sn) ... O,(s,)W) 

a combined output (s k }k= 1 ..... n E HSk and a new density matrix 
k 

1 
- -  O n ( $ n )  . . .  O1($1)W. p((sk )) 

The Condition (A) ensures that this composition of instruments is independent of their numbering 

(which although assumed to be chronological, is still arbitrary in case of space-like separation). 

But we need a stronger condition. Any operation O has a representation (see [3] ) by means of an 

auxiliary Hilbert space H1 describing an apparatus, a density matrix W1 on H~ describing the 

initial apparatus state, a unitary operator U~ on H e / / 1  describing an interaction between system 

and apparatus, and a projection operator P on H~ describing a property of the apparatus; we shall 

denote this fact as 0 = Op(W1, U1,P). It is known also [3] that any instrument {O(s) }sEs has 

a representation by means of a single apparatus: O(s) = Op(W1, U1, P(s)), where {P(s) }ses is an 

ideal measurement, i.e., a family of disjoint projection operators on H~ whose sum is 11. 

Condition (B). The instruments {Ok, (st:)} are such that there are Hilbert spaces He,  unitary 

operators Uk on H e  H k and ideal measurements {Pk(sk) }sk~Sk on H k for k = 1 ..... n obeying: 

(B1) if Ck ~ C/, then for any density matrices Wk on H k and Wt on H t the two instruments 

(Op (Wk, Uk, Pk(sk)) )skeSk and (Op (Wb Ul, Pl(Sl)) }sleSl 

commute; and 

(B2) for every k there is a density matrix ~ on Hk such that Ok(sk) = Op(W~ Irk, Pk(sk)) 
for all s k E Sk. 

Thus, the condition (B) demands that space-like separated instruments commute not only for 

the prescribed initial states of  apparatuses, but also for arbitrary ones. It might look surprising 

that a set of  instruments may obey Condition (A) while violating Condition (B), but this is really 

a fact. Apparently, such a set of instruments is unrealizable. 

Let us introduce inputs. We consider a finite parameter set Rk for each k = 1 ,...,n, and suppose 

that each instrument depends on a corresponding parameter r e ERk ;  this means that operations 

Ok(rk, Sk) are given for every k = 1,...,n, rk ERIc, Sk ESk,  and for each rtc, {Ok@k, sic) }SkESk 
is an instrument. Now we define a transition probability function for fixed W: 

P({Sk } [ {rk }) = Tr (On(m, Sn) ... 01 (rl, sl ) W). 
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It is convenient in the following theorem to replace the set {01 ..... On } of regions by an arbitrary 

set, partially ordered with respect to causal dependence as above. 

T H E O RE M 4. Suppose that K is a partially ordered finite set, Rk and Sk are finite sets for every 

k E K ,  andarealnumberp({sk}l(rk})isgivenforevery ( rk}k~KE II Rk,  (Sk}k~K E 
k ~ K  

II S~c. Then the following two conditions are equivalent. 
k~K 

(1) There are a Hilbert space H and a family of  operations Og(rk, Sk) acting on L~ (I-1)for 

k E K, rk @ Rk, sk E Sg, such that for every rg the Condition {B) holds for {Ok(rg, Sk) }skESk, 

and there is a density matrix W on H such that for every {rk } and {Sg } 

Tr(( II Ok(rlc, sk) ) W) =P({Sk } i {rk)) , 
k E k  

where the product is conform to the order, i.e. 

II Ok@k, Sk) = Okn(rkn,  Skn ) ... Ok ,  ( rk l ,  S k i ) ,  
k ~ K  

where kl ..... kn forms a numbering of  K such that k i < k] implies that i <]," the choice of  this 

numbering does not affect the product in consequence of the Condition (B). 

(2) There are a Hilbert space H, a density matrix W and projection operators Qk(Sk, {rt }) on H 

for kEK, sg E Sg, {rl }tEK E II Rt, obeying 
l~K 

(2a) for every {rt } and k 

Qk(Sk,  {rl)) = 11 , 
Sk~Sk 

summands being disjoint," 

(2b) for every {rl}, kl,  k2, Sg,, and Sg~ operators Qg, (Sk~, {rt} ) and Qg~ (Sg~, {rt} ) 

commute," 

(2c) for every k and s k the operator Qk(Sk, {r t }) depends in fact only on r t having l <~ k; 

(2d) for every {re } and {sg } 

Tr(( II Qk(Sk ,{r l ) ) )W)=p({sk) l{rk})  
k ~ K  

( {r z }is the same as {re }). 

The relation between Conditions (1) and (2) of Theorem 4 is somewhat similar to the relation 

between the interaction representation and the Heisenberg representation. Indeed, we accept in 

(1) that the state of the system changes because of interactions with apparatuses, whereas we do 

not distinguish in (2) between system and apparatuses, and accept a changeless state, but obser- 
vables depending on parameters. 

If one demands in addition to (2) that all Qk(Sk, (rt }) commute with each other even when 

belonging to different parameters {rl}, then one obtains the condition of classical realizability of 

a transition probability function. It is easy to see that this condition is necessary in any local hidden 
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variable theory. On the other hand, one can argue that it is also sufficient: to realize a transition 

probability function obeying this condition, one needs only suitable logic circuits as used in com- 

puters together with random generators. On the other hand, we have no reason to believe that in 

the general (noncommutative) case the necessary condition pointed out in Theorem 4 is also 

sufficient for physical realizability. It should be interesting to find a stronger necessary condition, 

as well as to look for a general sufficient condition. Perhaps a suitable candidate for this would be 

a 'net of abstract scatterings', i.e. an oriented graph, with Hilbert spaces corresponding to its 

edges and unitary operators on tensor products corresponding to its nodes. Perhaps a further de- 

velopment of experimental techniques connected with Bell's inequality will lead to the conclusion 

that any such 'net of abstract scatterings' may be approximately realized in a suitable experiment. 
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