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On the Problem of Hidden Variables in Quantum 
Mechanics* 
JOHN S. BELL t 
Stanford Linear Accelerator Center, Stanford University, Stanford, California 

The demonstrations of von Neumann and others, that quantum mechanics does not permit a hidden variable inter
pretation, are reconsidered. It is shown that their essential axioms are unreasonable. It is urged that in further examination 
of this problem an interesting axiom would be that mutually distant systems are independent of one another. 

I. INTRODUCTION 

To know the quantum mechanical state of a system 
implies, in general, only statistical restrictions on the 
results of measurements. It seems interesting to ask 
if this statistical element be thought of as arising, as 
in classical statistical mechanics, because the states in 
question are averages over better defined states for 
which individually the results would be quite deter
mined. These hypothetical "dispersion free" states 
would be specified not only by the quantum mechanical 
state vector but also by additional "hidden variables"
"hidden" because if states with prescribed values of 
these variables could actually be prepared, quantum 
mechanics would be observably inadequate. 

Whether this question is indeed interesting has been 
the subject of debate.1 •2 The present paper does not 
contribute to that debate. It is addressed to those who 
do find the question interesting, and more particularly 
to those among them who believe that 3 "the question 
concerning the existence of such hidden variables re
ceived an early and rather decisive answer in the form 
of von Neumann's proof on the mathematical impos
sibility of such variables in quantum theory." An at
tempt will be made to clarify what von Neumann and 
his successors actually demonstrated. This will cover, as 
well as von Neumann's treatment, the recent version 
of the argument by Jauch and Piron,3 and the stronger 

* Work supported by U.S. Atomic Energy Commission. 
t Permanent address: CERN, Geneva. 
1 The following works contain discussions of and references 

result consequent on the work of Gleason.4 It will be 
urged that these analyses leave the real question un
touched. In fact it will be seen that these demonstra
tions require from the hypothetical dispersion free 
states, not only that appropriate ensembles thereof 
should have all measurable properties of quantum 
mechanical states, but certain other properties as well. 
These additional demands appear reasonable when re
sults of measurement are loosely identified with prop
erties of isolated systems. They are seen to be quite 
unreasonable when one remembers with Bohr5 "the 
impossibility of any sharp distinction between the 
behavior of atomic objects and the interaction with 
the measuring instruments which serve to define the 
conditions under which the phenomena appear." 

The realization that von Neumann's proof is of 
limited relevance has been gaining ground since the 
1952 work of Bohm.6 However, it is far from universal. 
Moreover, the writer has not found in the literature 
any adequate analysis of what went wrong.7 Like all 
authors of noncommissioned reviews, he thinks that 
he can restate the position with such clarity and sim
plicity that all previous discussions will be eclipsed. 

II. ASSUMPTIONS, AND A SIMPLE EXAMPLE 

The authors of the demonstrations to be reviewed 
were concerned to assume as little as possible about 
quantum mechanics. This is valuable for some purposes, 
but not for ours. We are interested only in the possi
bility of hidden variables in ordinary quantum me-

on the hidden variable problem: L. de Broglie, Physicien et 4 A. M. Gleason, J. Math. & Mech. 6,885 (1957). I am much 
Penseur (Albin Michel, Paris, 1953); W. Heisenberg, in Niels indebted to Professor Jauch for drawing my attention to this 
Bohr and the Development of Physics, W. Pauli, Ed. (McGraw-Hill work. 
Book Co., Inc., New York, and Pergamon Press, Ltd., London, 6 N. Bohr, in Ref. 2. 
1955); Observation and Interpretation, S. Korner, Ed. (Academic 6 D. Bohm, Phys. Rev. 85, 166, 180 (1952). 
Press Inc., New York, and Butterworths Scientific Publ., Ltd., 7 In particular the analysis of Bohm6 seems to lack clarity, 
London, 1957); N. R. Hansen, The Concept of the Positron (Cam- or else accuracy. He fully emphasizes the role of the experimental 
bridge University Press, Cambridge, England, 1963). See also arrangement. However, it seems to be implied (Ref. 6, p. 187) 
the various works by D. Bohm cited later, and Bell and Nauen- that the circumvention of the theorem requires the association 
berg.• For the view that the possibility of hidden variables has of hidden variables with the apparatus as well as with the system 
little interest, see especially the contributions of Rosenfeld to the observed. The scheme of Sec. II is a counter example to this. 
first and third of these references, of Pauli to the first, the article Moreover, it will be seen in Sec. III that if the essential additivity 
of Heisenberg, and many passages in Hansen. assumption of von Neumann were granted, hidden variables 

2 A. Einstein, Philosopher Scientist, P. A. Schilp, Ed. (Library wherever located would not avail. Bohm's further remarks in 
of Living Philosophers, Evanston, Ill., 1949). Einstein's "Auto- Ref. 16 (p. 95) and Ref. 17 (p. 358) are also unconvincing. 
biographical Notes" and "Reply to Critics" suggest tha.t--the Other critiques of the theorem are cited, and some of them 
hidden variable problem has some interest. rebutted, by Albertson [J. Albertson, Am. J. Phys. 29, 478 

3 J.M. Jauch and C. Piron, Helv. Phys. Acta 36, 827 (1963). (1961)]. 
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chanics and will use freely all the usual notions. Thereby 
the demonstrations will be substantially shortened. 

A quantum mechanical "system" is supposed to 
have "observables" represented by Hermitian opera
tors in a complex linear vector space. Every "measure
ment" of an observable yields one of the eigenvalues 
of the corresponding operator. Observables with com
muting operators can be measured simultaneously.8 A 
quantum mechanical "state" is represented by a vector 
in the linear state space. For a state vector ,J, the statis
tical expectation value of an observable with operator 
0 is the normalized inner product (if;, Oif;) / (if;, if;) . 

The question at issue is whether the quantum me
chanical states can be regarded as ensembles of states 
further specified by additional variables, such that 
given values of these variables together with the state 
vector determine precisely the results of individual 
measurements. These hypothetical well-specified states 
are said to be "dispersion free." 

In the following discussion it will be useful to keep 
in mind as a simple example a system with a two
dimensional state space. Consider for definiteness a 
spin -½ particle without translational motion. A 
quantum mechanical state is represented by a two
component state vector, or spinor, if;. The observables 
are represented by 2 X 2 Hermitian matrices 

(1) 

where a is a real number, (.J a real vector, and d has for 
components the Pauli matrices; a is understood to mul
tiply the unit matrix. Measurement of such an observ
able yields one of the eigenvalues. 

(2) 

with relative probabilities that can be inferred from 
the expectation value 

For this system a hidden variable scheme can be sup
plied as follows: The dispersion free states are specified 
by a real number A, in the interval-½~>-~½, as well 
as the spinor if;. To describe how A determines which 
eigenvalue the measurement gives, we note that by a 
rotation of coordinates if; can be brought to the form 

8 Recent papers on the measurement process in quantum 
mechanics, with further references, are: E. P. Wigner, Am. J. 
Phys. 31, 6 (1963); A. Shimony, ibid. 31, 755 (1963); J.M. Jauch, 
Helv. Phys. Acta 37, 293 (1964); B. d'Espagnat, Conceptions 
de la physique contemporaine (Hermann & Cie., Paris, 1965); 
J. S. Bell and M. Nauenberg, in Preludes in Theoretical Physics, 
In Honor of V. Weisskopj (North-Holland Publishing Company, 
Amsterdam, 1966). 

Let fJ,., fJ11, {J., be the components of (.J in the new co
ordinate system. Then measurement of a+(.J•d on the 
state specified by ,J, and A results with certainty in the 
eigenvalue 

where 

and 

a+! (.JI sign (A I (.J !+½ I fJ, I) sign X, (3) 

=fJ,. if /3.= 0, {3,,;~0 

if/3.=0, and fJ.,=0 

signX=+l 

=-1 

if x~o 

if X<O. 

The quantum mechanical state specified by if; is ob
tained by uniform averaging over A. This gives the 
expectation value 

(a+(.J•d) 

= j~ dX{a+l (.JI sign (A I~[+½ I /3. I) sign X} =a+fJ. 

as required. 
It should be stressed that no physical significance is 

attributed here to the parameter A and that no pretence 
is made of giving a complete reinterpretation of quan
tum mechanics. The sole aim is to show that at the level 
considered by von Neumann such a reinterpretation 
is not excluded. A complete theory would require for 
example an account of the behavior of the hidden vari
ables during the measurement process itself. With or 
without hidden variables the analysis of the measure
ment process presents peculiar difficulties,8 and we 
enter upon it no more than is strictly necessary for our 
very limited purpose. 

III. VON NEUMANN 

Consider now the proof of von Neumann 9 that dis
persion free states, and so hidden variables, are im
possible. His essential assumption10 is: Any real linear 
combination of any two Hermitian operators represents 
an observable, and the same linear combination of expecta-

9 J. von Neumann, Mathematische Grundlagen der Quanten
mechanik (Julius Springer-Verlag, Berlin, 1932) [Eng_lish transl.: 
Princeton University Press, Princeton, N.J., 1955J. All page 
numbers quoted are those of the English edition. The problem 
is posed in the preface, and on p. 209. The formal proof occupies 
essentially pp. 305-324 and is followed by several pages of com
mentary. A self-contained exposition of the proof has been pre
sented by J. Albertson (see Ref. 7). 

10 This is contained in von Neumann's B' (p. 311), 1 (p. 313), 
and 11 (p. 314). 



tion values is the expectation value of the combination. 
This is true for quantum mechanical states; it is re
quired by von Neumann of the hypothetical dispersion 
free states also. In the two-dimensional example of 
Sec. II, the expectation value must then be a linear 
function of a and ~- But for a dispersion free state 
(which has no statistical character) the expectation 
value of an observable must equal one of its eigenvalues. 
The eigenvalues (2) are certainly not linear in~- There
fore, dispersion free states are impossible. If the state 
space has more dimensions, we can always consider a 
two-dimensional subspace; therefore, the demonstration 
is quite general. 

The essential assumption can be criticized as follows. 
At first sight the required additivity of expectation 
values seems very reasonable, and it is rather the non
additivity of allowed values (eigenvalues) which re
quires explanation. Of course the explanation is well 
known: A measurement of a sum of noncommuting 
observables cannot be made by combining trivially the 
results of separate observations on the two terms-it 
requires a quite distinct experiment. For example the 
measurement of O'x for a magnetic particle might be 
made with a suitably oriented Stern Gerlach magnet. 
The measurement of o-11 would require a different orien
tation, and of (o-.,+a-11) a third and different orientation. 
But this explanation of the nonadditivity of allowed 
values also establishes the non triviality of the additivity 
of expectation values. The latter is a quite peculiar 
property of quantum mechanical states, not to be ex
pected a priori. There is no reason to demand it in
dividually of the hypothetical dispersion free states, 
whose function it is to reproduce the measurable peculi
arities of quantum mechanics when averaged over. 

In the trivial example of Sec. II the dispersion free 
states (specified X) have additive expectation values 
only for commuting operators. Nevertheless, they give 
logically consistent and precise predictions for the re
sults of all possible measurements, which when averaged 
over X are fully equivalent to the quantum mechanical 
predictions. In fact, for this trivial example, the hidden 
variable question as posed informally by von N eumann11 

in his book is answered in the affirmative. 
Thus the'-formal proof of von Neumann does not 

justify his informal conclusion12: "It is therefore not, 
as is often assumed, a question of reinterpretation of 
quantum mechanics-the present system of quantum 
mechanics would have to be objectively false in order 
that another description of the elementary process than 
the statistical one be possible." It was not the objective 
measurable predictions of quantum mechanics which 
ruled out hidden variables. It was the arbitrary as
sumption of a particular (and impossible) relation 
between the results of incompatible measurements 

11 Reference 9, p. 209. 
12 Reference 9, p; 325. 
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either of which might be made on a given occasion but 
only one of which can in fact be made. 

IV. JAUCH AND PIRON 

A new version of the argument has been given by 
Jauch and Piron.3 Like von Neumann they are in
terested in generalized forms of quantum mechanics 
and do not assume the usual connection of quantum 
mechanical expectation values with state vectors and 
operators. We assume the latter and shorten the argu
ment, for we are concerned here only with possible 
interpretations of ordinary quantum mechanics. 

Consider only observables represented by projection 
operators. The eigenvalues of projection operators are 
0 and 1. Their expectation values are equal to the prob
abilities that 1 rather than O is the result of measure
ment. For any two projection operators, a and b, a third 
(anb) is defined as the projection on to the intersection 
of the corresponding subspaces. The essential axioms 
of Jauch and Piron are the following: 

(A) Expectation values of commuting projection 
operators are additive. 

(B) If, for some state and two projections a and b, 

then for that state 
(a)=(b)=l, 

(anb)=1. 

Jauch and Piron are led to this last axiom (4° in 
their numbering) by an analogy with the calculus of 
propositions in ordinary logic. The projections are to 
some extent analogous to logical propositions, with the 
allowed value 1 corresponding to "truth" and O to 
"falsehood," and the construction ( anb) to ( a "and" b) 
In logic we have, of course, if a is true and b is true then 
(a and b) is true. The axiom has this same structure. 

Now we can quickly rule out dispersion free states 
by considering a 2-dimensional subspace. In that the 
projection operators are the zero, the unit operator, 
and those of the form 

½+½a•d, 

where a is a unit vector. In a dispersion free state the 
expectation value of an operator must be one of its 
eigenvalues, 0 or 1 for projections. Since from A 

(½+½a•d)+ (½-½a•d)= 1, 

we have that for a dispersion free state either 

(½+½a• d)= 1 or (½-½a• d)= 1. 

Let a and ~ be any noncollinear unit vectors and 

with the signs chosen so that (a)=(b)=1. Then B 
requires 

(anb)= 1. 
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But with & and S noncollinear, one readily sees that 

anb=0, 
so that 

(anb)=0. 

So there can be no dispersion free states. 
The objection to this is the same as before. We are not 

dealing in B with logical propositions, but with measure
ments involving, for example, differently oriented mag
nets. The axiom holds for quantum mechanical states. 13 

But it is a quite peculiar property of them, in no way 
a necessity of thought. Only the quantum mechanical 
averages over the dispersion free states need reproduce 
this property, as in the example of Sec. II. 

V. GLEASON 

The remarkable mathematical work of Gleason4 was 
not explicitly addressed to the hidden variable problem. 
It was directed to reducing the axiomatic basis of 
quantum mechanics. However, as it apparently enables 
von Neumann's result to be obtained without objection
able assumptions about noncommuting operators, we 
must clearly consider it. The relevant corollary of 
Gleason's work is that, if the dimensionality of the 
state space is greater than two, the additivity require
ment for expectation values of commuting operators 
cannot be met by dispersion free states. This will now 
be proved, and then its significance discussed. It should 
be stressed that Gleason obtained more than this, by 
a lengthier argument, but this is all that is essential 
here. 

It suffices to consider projection opera tors. Let P (cf>) 
be the projector on to the Hilbert space vector <I>, i.e., 
acting on any vector if; 

If a set cf>, are complete and orthogonal, 

Since the P(cf>,) commute, by hypothesis then 

L (P(<I>,) )=1. 
i 

(4) 

Since the expectation value of a projector is nonnega
tive (each measurement yields one of the allowed values 
0 or 1), and since any two orthogonal vectors can be 
regarded as members of a complete set, we have: 

(A) If with some vector cf>, (P(<I>))=1 for a given 
state, then for that state (P(if;) )=0 for any if; orthog
onal on cf>. 

18 In the two-dimensional case {a}= {b} = 1 (for some quantum 
mechanical state) is possible only if the two projectors are identical 
(a=J). Then anb=a=b and {anb)= {a}= {b}=l. 

If i/11 and i/12 are another orthogonal basis for the 
subspace spanned by some vectors <I>1 and <I>2, then 
from (4) 

(P(if;1))+(P(if;2))=1- L (P(<P,)) 
i;,<l,i;,£2 

or 

Since i/11 may be any combination of <I>1 and <I>2, we have: 

(B) If for a given state 

(P( <P1) )= (P( <I>2) )=0 

for some pair of orthogonal vectors, then 

(P(acf>1+.B<P2) )=0 
for all a and ,8. 

(A) and (B) will now be used repeatedly to establish 
the following. Let cf> and if; be some vectors such that 
for a given state 

(P(if;) )= 1, 

(P(cf>) )=0. 

Then <I> and if; cannot be arbitrarily close; in fact 

(5) 

(6) 

(7) 

To see this let us normalize if; and write <I> in the form 

<I>=if;+eif;', 

where if;' is orthogonal toy; and normalized and e is a 
real number. Let if;" be a normalized vector orthogonal 
to both if; and if;' (it is here that we need three dimen
sions at least) and so to <I>. By (A) and ( S), 

(P(if;') }=0, 

Then by (B) and (6), 

(P(i/1''))=0. 

(P( <P+,,-1ey;") )=0, 

where 'Y is any real number, and also by (B), 

The vector arguments in the last two formulas are 
orthogonal; so we may add them, again using (B): 

Now if e is less than½, there are real 'Y such that 

Therefore, 

(P(if;+if;") )= (P(if;-if;") )= 0. 

The vectors if;±if;" are orthogonal; adding them and 
again using (B), 

(P(f) )=0. 



This contradicts the assumption (5), Therefore, 

as announced in (7). 
Consider now the possibility of dispersion free states. 

For such states each projector has expectation value 
either O or 1. It is clear from ( 4) that both values must 
occur, and since there are no other values possible, 
there must be arbitrarily close pairs y;, <I> with different 
expectation values 0 and 1, respectively. But we saw 
above such pairs could not be arbitrarily close. There
fore, there are no dispersion free states. 

That so much follows from such apparently innocent 
assumptions leads us to question their innocence. Are 
the requirements imposed, which are satisfied by 
quantum mechanical states, reasonable requirements 
on the dispersion free states? Indeed they are not. 
Consider the statement (B). The operator P(a<1>1+r,<1>2) 
commutes with P( <1>1) and P( <1>2) only if either a or(, 
is zero. Thus in general measurement of P(a<1>1+r,<1>2) 
requires a quite distinct experimental arrangement. 
We can therefore reject (B) on the grounds already 
used: it relates in a nontrivial way the results of ex
periments which cannot be performed simultaneously; 
the dispersion free states need not have this property, 
it will suffice if the quantum mechanical averages over 
them do. How did it come about that (B) was a con
sequence of assumptions in which only commuting 
operators were explicitly mentioned? The danger in 
fact was not in the explicit but in the implicit assump
tions. It was tacitly assumed that measurement of an 
observable must yield the same value independently 
of what other measurements may be made simultane
ously. Thus as well as P(<1>3) say, one might measure 
either P(<l>2) or P(y;2), where <1>2 and 1/12 are orthogonal 
to <1>3 but not to one another. These different possibilities 
require different experimental arrangements; there is 
no a priori reason to believe that the results for P ( <1>3) 

should be the same. The result of an observation may 
reasonably depend not only on the state of the system 
(including hidden variables) but also on the complete 
disposition of the apparatus; see again the quotation 
from Bohr at the end of Sec. I. 

To illustrate these remarks, we construct a very 
artificial but simple hidden variable decomposition. 
If we regard all observables as functions of commuting 
projectors, it will suffice to consider measurements 
of the latter. Let A, P2, • • • be the set of projectors 
measured by a given apparatus, and for a given quan
tum mechanical state let their expectation values be 
;>,.1, },.2-;>,.1, ;>,.3-;>,.2, • • •. As hidden variable we take a 
real number O< ;>..::S; 1; we specify that measurement 
on a state with given X yields the value 1 for P,. if 
},.,._1 <X::S;X,., and zero otherwise. The quantum me
chanical state is obtained by uniform averaging over 
;>,.. There is no contradiction with Gleason's corollary, 
because the result for a given P,. depends also on the 
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choice of the others. Of course it would be silly to let 
the result be affected by a mere permutation of the 
other P's, so we specify that the same order is taken 
(however defined) when the P's are in fact the same 
set. Reflection will deepen the initial impression of 
artificiality here. However, the example suffices to 
show that the implicit assumption of the impossibility 
proof was essential to its conclusion. A more serious 
hidden variable decomposition will be taken up in 
Sec. VI.14 

VI. LOCALITY AND SEPARABILITY 

Up till now we have been resisting arbitrary demands 
upon the hypothetical dispersion free states. However, 
as well as reproducing quantum mechanics on averag
ing, there are features which can reasonably be desired 
in a hidden variable scheme. The hidden variables 
should surely have some spacial significance and should 
evolve in time according to prescribed laws. These are 
prejudices, but it is just this possibility of interpolating 
some (preferably causal) space-time picture, between 
preparation of and measurements on states, that makes 
the quest for hidden variables interesting to the un
sophisticated. 2 The ideas of space, time, and causality 
are not prominent in the kind of discussion we have 
been considering above. To the writer's knowledge the 
most successful attempt in that direction is the 1952 
scheme of Bohm for elementary wave mechanics. By 
way of conclusion, this will be sketched briefly, and 
a curious feature of it stressed. 

Consider for example a system of two spin - ½ par
ticles. The quantum mechanical state is represented by 
a wave function, 

y;;;(r1, r2), 

where i andj are spin indices which will be suppressed. 
This is governed by the Schrodinger equation, 

ay;/at= -i(- (a2/ar12)- (a2/ar22) + V(r1-r 2) 

+ad1•H(r1)+bd2•H(r2))y;, (8) 

where V is the interparticle potential. For simplicity 
we have taken neutral particles with magnetic mo
ments, and an external magnetic field H has been al
lowed to represent spin analyzing magnets. The hidden 
variables are then two vectors X1 and X2, which give 
directly the results of position measurements. Other 
measurements are reduced ultimately to position meas
urements. 15 For example, measurement of a spin com
ponent means observing whether the particle emerges 
with an upward or downward deflection from a Stern-

14 The simplest example for illustrating the discussion of Sec. V 
would then be a particle of spin 1, postulating a sufficient variety 
of spin-external-field interactions to permit arbitrary complete 
sets of spin states to be spacially separated. 

15 There are clearly enough measurements to be interesting 
that can be made in this way. We will not consider whether there 
are others. 



452 REVIEWS OF MODERN PHYSICS• JULY 1966 

Gerlach magnet. The variables X1 and X2 are supposed 
to be distributed in configuration space with the prob
ability density, 

p(X1, X2) = I: I 1h(X1, X2) 12, 
ii 

appropriate to the quantum mechanical state. Con
sistently, with this X1 and X2 are supposed to vary with 
time according to 

aX..1/dt= p(J{1, X2)-1 Im I: 1h*(X1, X2)(a/aX1)ift;;(J{1, X2), 
ii 

aX2/dt=p(X1, X2)-1 Im I: if,;;*(){1, X2)(a/aX2)if,;;(X1, X2). 
ij 

(9) 

The curious feature is that the trajectory equations 
(9) for the hidden variables have in general a grossly 
nonlocal character. If the wave function is factorable 
before the analyzing fields become effective ( the par
ticles being far apart), 

if,;;(X1, X2) = 4>;(X1) x1(X2), 

this factorability will be preserved. Equations (8) then 
reduce to 

dX1/dt=[L cp;*(X1)'P;(X1)]-1 
i 

x Im I: P;*(X1) (a/aX1)P;(X1), 
i 

aX..2/dt= [L x/(X2)x/X2) J-1 

j 

X Im I: x/(X2) (a/aX2)x(X2)-
; 

The Schrodinger equation (8) also separates, and the 
trajectories of X1 and X2 are determined separately by 
equations involving H(X 1) and H(X 2), respectively. 
However, in general, the wave function is not factorable. 
The trajectory of 1 then depends in a complicated way 
on the trajectory and wave function of 2, and so on the 

analyzing fields acting on 2-however remote these 
may be from particle 1. So in this theory an explicit 
causal mechanism exists whereby the disposition of 
one piece of apparatus affects the results obtained 
with a distant piece. In fact the Einstein-Podolsky
Rosen paradox is resolved in the way which Einstein 
would have liked least (Ref. 2, p. 85). 

More generally, the hidden variable account of a 
given system becomes entirely different when we re
member that it has undoubtedly interacted with nu
merous other systems in the past and that the total 
wave function will certainly not be factorable. The 
same effect complicates the hidden variable account 
of the theory of measurement, when it is desired to 
include part of the "apparatus" in the system. 

Bohm of course was well aware6•16- 18 of these features 
of his scheme, and has given them much attention. 
However, it must be stressed that, to the present 
writer's knowledge, there is no proof that any hidden 
variable account of quantum mechanics must have this 
extraordinary character. 19 It would therefore be in
teresting, perhaps, 1 to pursue some further "impossi
bility proofs," replacing the arbitrary axioms objected 
to above by some condition of locality, or of separability 
of distant systems. 
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