CAMBRIDGE UNIVERSITY PRESS

The Deduction Theorem in a Functional Calculus of First Order Based on Strict Implication Author(s): Ruth C. Barcan
Source: The Journal of Symbolic Logic, Vol. 11, No. 4 (Dec., 1946), pp. 115-118
Published by: Association for Symbolic Logic
Stable URL: http://www.jstor.org/stable/2268309
Accessed: 29-04-2016 01:55 UTC

[^0]JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Association for Symbolic Logic, Cambridge University Press are collaborating with JSTOR to digitize, preserve and extend access to The Journal of Symbolic Logic

THE DEDUCTION THEOREM IN A FUNCTIONAL CALCULUS OF FIRST ORDER BASED ON STRICT IMPLICATION

RUTH C. BARCAN

In a previous paper, ${ }^{1}$ a functional calculus based on strict implication was developed. That system will be referred to as $\mathrm{S} 2^{1}$. The system resulting from the addition of Becker's ${ }^{2}$ axiom " $\diamond \diamond \mathrm{A} \zeta \diamond \mathrm{A}$ " will be referred to as $\mathrm{S} 4^{1}$. In the present paper ${ }^{3}$ we will show that a restricted deduction theorem is provable in $S 4^{1}$ or more precisely in a system equivalent to $S 4^{1}$. We will also show that such a deduction theorem is not provable in $\mathrm{S} 2^{1}$.

The following theorems not derived in Symbolic logic will be required for the fundamental theorems XXVIII* and XXIX* of this paper. We will state most of them without proofs.
96.

$$
\vdash(\mathrm{A} \supset(\mathrm{~B} \supset \mathrm{E})) \dashv((\mathrm{A} \supset \mathrm{~B}) \supset(\mathrm{A} \supset \mathrm{E}))
$$

97. $\quad-((\mathrm{A} \supset \mathrm{B}) \supset(\mathrm{A} \supset \mathrm{E})) \rightarrow(\mathrm{A} \supset(\mathrm{B} \supset \mathrm{E}))$
98. $\quad 卜(\mathrm{~A} \supset(\mathrm{~B} \supset \mathrm{E})) \equiv((\mathrm{A} \supset \mathrm{B}) \supset(\mathrm{A} \supset \mathrm{E}))$
99.

$$
\begin{aligned}
& f(\mathrm{~A} \supset(\mathrm{~B} \equiv \mathrm{E})) \equiv((\mathrm{A} \supset \mathrm{~B}) \equiv(\mathrm{A} \supset \mathrm{E})) \\
& ((\mathrm{A} \supset(\mathrm{~B} \supset \mathrm{E}))(\mathrm{A} \supset(\mathrm{E} \supset \mathrm{~B}))) \equiv(((\mathrm{A} \supset \mathrm{~B}) \supset(\mathrm{A} \supset \mathrm{E}))((\mathrm{A} \supset \\
& \mathrm{E}) \supset(\mathrm{A} \supset \mathrm{~B}))) \quad 98, \text { adj, 80, mod pon } \\
& (\mathrm{A} \supset(\mathrm{~B} \equiv \mathrm{E})) \equiv((\mathrm{A} \supset \mathrm{~B}) \equiv(\mathrm{A} \supset \mathrm{E})) \quad 16.8, \text { subst, def }
\end{aligned}
$$

100. $\vdash \mathrm{A} \supset \mathrm{A}$
101. $\quad \vdash((\mathrm{A} \supset \mathrm{B})(\mathrm{A} \supset(\mathrm{B}-\mathrm{E}))) \nrightarrow(\mathrm{A} \supset \mathrm{E})$
XXV. If $\vdash \mathrm{A}-3 \mathrm{~B}$ then $\vdash(\mathrm{AE})-3 \mathrm{~B}$.
XXVI. If $ト \mathrm{E} \nrightarrow(\mathrm{A} \equiv \mathrm{B})$ then $\vdash((\mathrm{H} \supset \mathrm{E})(\mathrm{H} \supset \mathrm{A})) \nrightarrow(\mathrm{H} \supset \mathrm{B})$
and $F((\mathrm{H} \supset \mathrm{E})(\mathrm{H} \supset \mathrm{B}))-3(\mathrm{H}-3 \mathrm{~A})$. $(\sim H \vee E) \not-(\sim H \vee(A \equiv B))$
hyp, 19.64, mod pon, 13.11, subst

$$
(\mathrm{H} \supset \mathrm{E}) \dashv((\mathrm{H} \supset \mathrm{~A}) \equiv(\mathrm{H} \supset \mathrm{~B}))
$$

14.2, 99, subst, def, 2, VIII
$((\mathrm{H} \supset \mathrm{E})(\mathrm{H} \supset \mathrm{A}))-3(\mathrm{H} \supset \mathrm{Bj}) \quad 14.26$, subst
Similarly,
$((\mathrm{H} \supset \mathrm{E})(\mathrm{H} \supset \mathrm{B})) \nrightarrow(\mathrm{H} \supset \mathrm{A})$

[^1]102.
\[

$$
\begin{aligned}
& f(H-3(A \equiv B))-3((H-3 A) \supset(H-3 B)) \text { and } \\
& \vdash(H-3(A \equiv B))-3((H-3 B) \supset(H-A)) .
\end{aligned}
$$
\]

XXVII. If $\vdash \mathrm{E} \nrightarrow(\mathrm{A} \equiv \mathrm{B})$ then $\vdash((\mathrm{H} \not-\mathrm{E})(\mathrm{H} \nrightarrow \mathrm{A})) \not-(\mathrm{H} \nrightarrow \mathrm{B})$ and

$$
\begin{array}{ll}
& f((\mathrm{H}-3 \mathrm{E})(\mathrm{H}-3 \mathrm{~B}))-3(\mathrm{H}-3 \mathrm{~A}) \\
(\sim \mathrm{H} \vee \mathrm{E}) & -3(\sim \mathrm{H} \vee(\mathrm{~A} \equiv \mathrm{~B})) \\
(\mathrm{hyp}, 19.64, \text { mod pon, } 13.11, \text { subst } \\
((\mathrm{H}-3 \mathrm{E})-3(\mathrm{H}-3(\mathrm{~A} \equiv \mathrm{~B})) & 14.2, \text { VII, 18.7, subst } \\
(\mathrm{H}-\mathrm{A})) \rightarrow(\mathrm{H}-3 \mathrm{~B}) & 102, \text { VIII, 14.26, subst }
\end{array}
$$

Similarly,
$((\mathrm{H} \jmath \mathrm{E})(\mathrm{H} \not-\mathrm{B})) \nrightarrow(\mathrm{H} \not-\mathrm{A})$.
The axiom which distinguishes $\mathrm{S} 4^{1}$ is 103^{*}. Theorems derivable in $\mathrm{S} 4^{1}$ but not in $S 2^{1}$ will be marked by an asterisk.
104^{*} and 105^{*} are required in the proof of XIX*.
103*.
$\vdash \diamond \diamond A-\diamond A$
104*.
$\vdash \square \square A \equiv \square A$
105*. $\quad \mid \square \mathrm{A}-3(\mathrm{~B}-3 \square \mathrm{~A})$
$S 2^{1} \mathrm{eq}$ and $\mathrm{S} 4^{1} \mathrm{eq}$. A consideration of the deduction theorem requires a definition on "proof on hypotheses." Such a definition is facilitated if we formulate it in terms of a system equivalent to $S 2^{1}$ which will be referred to as $S 2^{1}$ eq.

Every axiom of $S 2^{1}$ is an axiom of $S 2^{1}$ eq. The rule for generalization in $S 2^{1}$ is replaced by the following rule for axioms: If A is an axiom then $(\beta) \mathrm{B}$ is an axiom where B is the result of replacing all free occurrences of α in A by β. The rule for adjunction is like that of $S 2^{1}$ extended to include the following: If $\left(\alpha_{1}\right)\left(\alpha_{2}\right)$ $\cdots\left(\alpha_{m}\right) \mathrm{A}$ and $\left(\alpha_{1}\right)\left(\alpha_{2}\right) \mathrm{B} \cdots\left(\alpha_{m}\right)$ are provable then $\left(\alpha_{1}\right)\left(\alpha_{2}\right) \cdots\left(\alpha_{m}\right)(\mathrm{AB})$ is provable. The substitution rule of $S 2^{1}$ is extended so as to read exactly like XVI. Modus ponens is retained.

The rule for axioms gives the effect of generalization since we can prove the following: If $A_{1}, A_{2}, \cdots, A_{n}$ are the steps of a proof of B where B is A_{n} then we can construct a corresponding proof such that $(\alpha) B$ is provable. Suppose A_{i} is an axiom, then replace A_{i} by $(\alpha) A_{i}$. If A_{i} is not an axiom then it follows from some previous $A_{i_{1}}$ and $A_{i_{2}}$ by modus ponens, adjunction or substitution. Suppose A_{i} follows by modus ponens. Let $A_{i_{2}}$ be $A_{i_{1}}-3 A_{i}$. One of the theorems derivable in $\mathrm{S} 2^{1} \mathrm{eq}$ is $(\alpha)(\mathrm{A}-3 \mathrm{~B})-3((\alpha) \mathrm{A}-3(\alpha) \mathrm{B})$ the proof of which is the same as 19 of $\mathrm{S} 2^{1}$ since the rule of generalization is not employed. Replace A_{i} by the sequence $(\alpha)\left(\mathrm{A}_{i_{1}} \dashv \mathrm{~A}_{i}\right) \dashv\left((\alpha) \mathrm{A}_{i_{1}} \dashv(\alpha) \mathrm{A}_{i}\right),(\alpha) \mathrm{A}_{i_{1}} \dashv(\alpha) \mathrm{A}_{i},(\alpha) \mathrm{A}_{i}$. If A_{i} follows from some preceding $A_{i_{1}}$ and $A_{i_{2}}$ by substitution or adjunction then replace A_{i} by $(\alpha) \mathrm{A}_{i}$.

It is obvious that $S 2^{1}$ is equivalent to $S 2^{1}$ eq. The axioms of $S 2^{1}$ and the generalization rule give us the axioms of $\mathrm{S} 2^{1}$ eq. Modus ponens is retained. The extended adjunction rule follows directly from 29 and modus ponens. XVI is the same as the extended rule of substitution.
$\mathrm{S} 4^{1} \mathrm{eq}$ is the system which results from the addition of axiom 103^{*} to $\mathrm{S} 2^{1} \mathrm{eq}$ and it is of course equivalent to $\mathrm{S} 4^{1}$.

Proof on hypotheses. Let B be said to be provable on the hypotheses A_{1}, A_{2}, \cdots, A_{n} in $S 2^{1}$ eq and $S 4^{1}$ eq if there is a finite list of formulas $B_{1}, B_{2}, \cdots, B_{s}$ where B_{s} is B, satisfying the following conditions:

For each $i(1 \leqq i \leqq s)$

1. B_{i} is one of $\mathrm{A}_{1}, \mathrm{~A}_{2}, \cdots, \mathrm{~A}_{n}$ or
2. B_{i} is an axiom or
3. B_{i} results by one of the rules of inference from $B_{i_{1}}$ and $B_{i_{2}}$
where $i_{1}<i$ and $i_{2}<i$.
B is provable on the hypotheses $A_{1}, A_{2}, \cdots, A_{n}$ will be abbreviated: A_{1}, A_{2}, $\cdots, \mathrm{A}_{n} \vdash \mathrm{~B}$.
In $\mathrm{S} 2^{1}$ eq we cannot prove either

$$
\begin{array}{lll}
& \text { 1. } & \mathrm{A}_{1}, \mathrm{~A}_{2}, \cdots, \mathrm{~A}_{n-1} \vdash \mathrm{~A}_{n} \supset \mathrm{~B} \\
\text { or } & \text { 2. } & \mathrm{A}_{1}, \mathrm{~A}_{2}, \cdots, \mathrm{~A}_{n-1} \vdash \mathrm{~A}_{n}-3 \mathrm{~B} \\
\text { from } & \text { 3. } & \mathrm{A}_{1}, \mathrm{~A}_{2}, \cdots, \mathrm{~A}_{n} \vdash \mathrm{~B} .
\end{array}
$$

This can be shown if we use an eight element matrix of Parry ${ }^{4}$ which satisfies the axioms and rules of S2. This matrix also satisfies $S 2^{1}$ eq if we regard the domain of individuals as consisting of a single individual $a .^{5}$ Every expression of the form (α) A would then be replaced by B where B results from substituting all free occurrences of α in A by a. Neither $(\mathrm{A}-3 \mathrm{~B}) \supset(\diamond \mathrm{A}-3 \diamond \mathrm{~B})$ nor $(\mathrm{A}-3$ B) $\dashv(\diamond A \not \supset \diamond B)$ are satisfied by this matrix although $(\diamond A \not \supset \diamond B)$ is provable on the hypothesis $(\mathrm{A}-\mathrm{B})$ in $\mathrm{S} 2^{1}$ eq. (Rule VI.)

In $\mathrm{S} 4^{1} \mathrm{eq}, 1$ always follows from 3 and 2 follows from 3 if each $\mathrm{A}_{r}(1 \leqq r \leqq n)$ can be transformed into an equivalent expression $\square \Gamma$.

XXVIII*. If $\mathrm{A}_{1}, \mathrm{~A}_{2}, \cdots, \mathrm{~A}_{n} \vdash \mathrm{~B}$ then $\mathrm{A}_{1}, \mathrm{~A}_{2}, \cdots, \mathrm{~A}_{n-1} \vdash \mathrm{~A}_{n} \supset \mathrm{~B}$.
Proof: Let us assume that $A_{n} \supset \mathrm{~B}_{m}$ has been proved for every B_{m} in the list $\mathrm{B}_{1}, \mathrm{~B}_{2}, \cdots, \mathrm{~B}_{s}$ of the definition of proof on hypotheses where $m<i$. We will show that $\vdash \mathrm{A}_{n} \supset \mathrm{~B}_{i}$.

Case (1). B_{i} is an axiom.

$$
\mathrm{B}_{i} \dashv\left(\mathrm{~A}_{n} \supset \mathrm{~B}_{i}\right) \quad 15.2
$$

$$
\mathrm{A}_{n} \supset \mathrm{~B}_{i} \quad \bmod \mathrm{pon}
$$

Case (2). B_{i} is A_{n}.

$$
\mathrm{A}_{n} \supset \mathrm{~B}_{i} \quad 100
$$

Case (3). B_{i} is one of $\mathrm{A}_{1}, \mathrm{~A}_{2}, \cdots, \mathrm{~A}_{n-1}$.
Proof like Case (1).
Case (4). B_{i} follows by modus ponens from a previous $B_{i_{1}}$ and $B_{i_{2}}$ where let us say $B_{i_{2}}$ is $B_{i_{1}}-3 B_{i}$.

$$
\begin{aligned}
& \left(\left(\mathrm{A}_{n} \supset \mathrm{~B}_{i_{1}}\right)\left(\mathrm{A}_{n} \supset\left(\mathrm{~B}_{i_{1}}-3 \mathrm{~B}_{i}\right)\right)\right)-3\left(\mathrm{~A}_{n} \supset \mathrm{~B}_{i}\right) \quad 101 \\
& \left(\mathrm{~A}_{n} \supset \mathrm{~B}_{i_{1}}\right)\left(\mathrm{A}_{n} \supset\left(\mathrm{~B}_{i_{1}}-3 \mathrm{~B}_{i}\right)\right) \quad \text { hyp, adj } \\
& \left(\mathrm{A}_{n} \supset \mathrm{~B}_{i}\right) \quad \text { mod pon }
\end{aligned}
$$

Case (5). $\quad \mathrm{B}_{i}$ follows from adjunction of a previous $\mathrm{B}_{i_{1}}$ and $\mathrm{B}_{i_{2}}$.

$$
\left(\left(\mathrm{A}_{n} \supset \mathrm{~B}_{i_{1}}\right)\left(\mathrm{A}_{n} \supset \mathrm{~B}_{i 2}\right)\right)-3\left(\mathrm{~A}_{n} \supset\left(\mathrm{~B}_{i_{1}} \mathrm{~B}_{i_{2}}\right)\right)
$$

16.8 , def, 12.17, mod pon

Where the extended rule is used we have

$$
\begin{aligned}
& \left(\left(\mathrm{A}_{n} \supset\left(\alpha_{1}\right)\left(\alpha_{2}\right) \cdots\left(\alpha_{m}\right) \mathrm{B}_{i_{1}}\right)\left(\mathrm{A}_{n} \supset\left(\alpha_{1}\right)\left(\alpha_{2}\right) \cdots\left(\alpha_{m}\right) \mathrm{B}_{i_{2}}\right)\right)-3 \\
& \left(\mathrm{~A}_{n} \supset\left(\alpha_{1}\right)\left(\alpha_{2}\right) \cdots\left(\alpha_{m}\right)\left(\mathrm{B}_{i_{1}} \mathrm{~B}_{i_{2}}\right)\right) \quad \text { Like step } 1 \text { using } 29 \text { and }
\end{aligned}
$$

subst.

[^2]
$A_{n} \supset B_{i} \quad h y p$, adj, mod pon

Case (6). B_{i} follows by substitution from a previous $B_{i_{1}}$ and $B_{i_{2}}$ where let us say $B_{i_{2}}$ is $\left(\alpha_{1}\right)\left(\alpha_{2}\right) \cdots\left(\alpha_{m}\right)(\Gamma \equiv \mathrm{E})$ and $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}$ is a complete list of the free variables in Γ and $E .{ }^{6}$

$$
\begin{array}{ll}
\left(\alpha_{1}\right)\left(\alpha_{2}\right) \cdots\left(\alpha_{m}\right)(\Gamma \equiv \mathrm{E})-3\left(\mathrm{~B}_{i_{1}} \equiv \mathrm{~B}_{i}\right) & \text { XIX }^{*}, 14.1, \text { IX, VIII } \\
\left(\left(\mathrm{A}_{n} \supset\left(\alpha_{1}\right)\left(\alpha_{2}\right) \cdots\left(\alpha_{m}\right)(\Gamma \equiv \mathrm{E})\right)\left(\mathrm{A}_{n} \supset \mathrm{~B}_{i_{1}}\right)\right) & -3\left(\mathrm{~A}_{n} \supset \mathrm{~B}_{i}\right) \\
\mathrm{A}_{n} \supset \mathrm{~B}_{i} \quad \text { hyp, adj. mod pon }
\end{array}
$$

XXIX*. If $A_{1}, A_{2}, \cdots, A_{n} \vdash \mathrm{~B}$ and if $卜 \mathrm{~A}_{1} \equiv \square \Gamma_{1}, \vdash \mathrm{~A}_{2} \equiv \square \Gamma_{2}, \cdots$,

$$
\vdash A_{n} \equiv \square \Gamma_{n}, \text { then } A_{1}, A_{2}, \cdots, A_{n-1} \vdash \mathrm{~A}_{n} \supset \mathrm{~B}
$$

Proof: Let us assume that $A_{n}-3 B_{m}$ has been proved for every B_{m} in the list $\mathrm{B}_{1}, \mathrm{~B}_{2}, \cdots, \mathrm{~B}_{s}$ of the definition of proof on hypotheses where $m<i$. We will show that $\vdash \mathrm{A}_{n}-3 \mathrm{~B}_{i}$.

Case (1). $\quad B_{i}$ is an axiom. Since every axiom of $S 4^{1} \mathrm{eq}$ is of the form $\mathrm{E}-\mathrm{H}$ or $\left(\alpha_{1}\right)\left(\alpha_{2}\right) \cdots\left(\alpha_{m}\right)(\mathrm{E}-\mathrm{H})$ it follows from 18.7, 39 and substitution that if M is an axiom then $\vdash \mathrm{M} \equiv \square \Gamma$.
$\mathrm{B}_{i} \dashv\left(\mathrm{~A}_{n}-3 \mathrm{~B}_{i}\right) \quad 105^{*}$
$A_{n} \dashv B_{i} \quad \bmod p o n$
Case (2). B_{1} is A_{n}

$$
\mathrm{A}_{n}-3 \mathrm{~B}_{i} \quad 12.1
$$

Case (3). B_{i} is one of $A_{1}, A_{2}, \cdots, A_{n}$

$$
\mathrm{A}_{n}-3 \mathrm{~B}_{i} \quad 105^{*} \text {, hyp, mod pon }
$$

Case (4). B_{i} follows from a previous $B_{i_{1}}$ and $B_{i_{2}}$ by modus ponens where let us say $\mathrm{B}_{i_{2}}$ is $\left.\mathrm{B}_{i_{1}}\right\} \mathrm{B}_{i}$.

$$
\begin{aligned}
& \left(\left(\mathrm{A}_{n} \supset \mathrm{~B}_{i_{1}}\right)\left(\mathrm{A}_{n} \supset\left(\mathrm{~B}_{i_{1}}-3 \mathrm{~B}_{i}\right)\right)\right)-3\left(\mathrm{~A}_{n} \supset \mathrm{~B}_{i}\right) \\
& \left(\left(\mathrm{A}_{n}-3 \mathrm{~B}_{i_{1}}\right)\left(\mathrm{A}_{n}-3\left(\mathrm{~B}_{i_{1}}-3 \mathrm{~B}_{i}\right)\right)\right)-3\left(\mathrm{~A}_{n}-3 \mathrm{~B}_{i}\right)
\end{aligned}
$$

VII, 19.81, 18.7, subst

$$
\left(\mathrm{A}_{n} \dashv \mathrm{~B}_{i_{1}}\right)\left(\mathrm{A}_{n} \dashv\left(\mathrm{~B}_{i_{1}} \dashv \mathrm{~B}_{i}\right)\right) \quad \text { hyp, adj }
$$

$$
\mathrm{A}_{n} \dashv \mathrm{~B}_{\mathrm{i}} \quad \bmod \text { pon }
$$

Case (5). $\quad B_{i}$ follows from adjunction of a previous $B_{i_{1}}$ and $B_{i_{2}}$.

$$
\left(\left(\mathrm{A}_{n} \dashv \mathrm{~B}_{i_{1}}\right)\left(\mathrm{A}_{n} \dashv \mathrm{~B}_{i_{2}}\right)\right) \dashv\left(\mathrm{A}_{n} \dashv\left(\mathrm{~B}_{i_{1}} \mathrm{~B}_{i_{2}}\right)\right) \quad 19.61
$$

$$
A_{n}-3 B_{i} \quad \text { hyp, adj, mod pon }
$$

Where the extended rule is used employ 29 and substitution as in XXVIII*.
Case (6). B_{i} follows from a previous $B_{i_{1}}$ and $B_{i_{2}}$ by substitution where let us say $\mathrm{B}_{i_{2}}$ is $\left(\alpha_{1}\right)\left(\alpha_{2}\right) \cdots\left(\alpha_{m}\right)(\Gamma \equiv \mathrm{E})$ and $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}$ is a complete list of the free variables in Γ and $E .{ }^{6}$

$$
\begin{aligned}
& \left(\alpha_{1}\right)\left(\alpha_{2}\right) \cdots\left(\alpha_{m}\right)(\Gamma \equiv \mathrm{E}) \rightrightarrows\left(\mathrm{B}_{i_{1}} \equiv \mathrm{~B}_{i}\right) \quad \text { XIX* } \\
& \left(\left(\mathrm{A}_{n} \dashv\left(\alpha_{1}\right)\left(\alpha_{2}\right) \cdots\left(\alpha_{m}\right)(\Gamma \equiv \mathrm{E})\right)\left(\mathrm{A}_{n}-3 \mathrm{~B}_{i_{1}}\right)\right)-3\left(\mathrm{~A}_{n}-3 \mathrm{~B}_{i}\right) \\
& \left.\mathrm{A}_{n}\right\} \mathrm{B}_{i} \quad \text { hyp, adj. mod pon }
\end{aligned}
$$

yale university

[^3]
[^0]: Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at http://about.jstor.org/terms

[^1]: Received September 17, 1946.
 ${ }^{1}$ A functional calculus of first order based or, strict implication, this Journal, vol. 11 (1946), pp. 1-16.
 ${ }^{2}$ See Lewis and Langford, Symbolic logic, pp. 497-502.
 ${ }^{3}$ Part of this paper was included in a dissertation written in partial fulfillment of the requirements for the $\mathrm{Ph} . \mathrm{D}$. degree in Philosophy at Yale University. I am grateful to Professor Frederic B. Fitch for his criticisms and suggestions.

[^2]: ${ }^{4}$ W. T. Parry, The postulates for "strict implication," Mind, vol. 43 (1934), pp. 78-80.
 ${ }^{5}$ This method for interpreting the quantifiers was suggested by the referee.

[^3]: ${ }^{6}$ If $\Gamma \equiv \mathrm{E}$ is provable then $\left(\alpha_{1}\right)\left(\alpha_{2}\right) \cdots\left(\alpha_{m}\right)(\Gamma \equiv \mathrm{E})$ is provable where $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}$ is a complete list of the free variables in Γ and E. We will assume that wherever B_{i} follows by substitution, the variables in Γ and E have been generalized upon.
 ${ }^{7}$ A slightly stronger theorem than XXIX* could be proved as an immediate corollary of XXVIII* if we introduced the following lemma: If $卜 \mathrm{~A} \supset \mathrm{~B}$ then $\vdash \square \mathrm{A} \supset \square \mathrm{B}$. We would then need only to assume that $\mid \mathbf{A}_{n}$ 픞 $\square \Gamma_{i}$ where $i<n$. This alternative proof was suggested by the referee.

