In information science, noise is generally the enemy of
information. But some noise is the friend of
freedom, since it is the source of novelty, of
creativity and invention, and of variation in the biological gene pool. Too much noise is simply entropic and destructive. With the right level of noise, the cosmic creation process is not overcome by the chaos.
When information is stored in any structure, from galaxies to minds, two fundamental physical processes occur. First is a collapse of a quantum mechanical wave function. Second is a local decrease in the entropy corresponding to the increase in information. Entropy greater than that must be transferred away to satisfy the second law of thermodynamics.
If wave functions did not collapse, their evolution over time would be completely deterministic and information-preserving. Nothing new would emerge that was not implicitly present in the earlier states of the universe.
It is ironic that noise, in the form of quantum mechanical wave function collapses, should be the ultimate source of new information (low or negative entropy), the very opposite of noise (positive entropy.
Because quantum level processes introduce noise, information stored may have errors. When information is retrieved, it is again susceptible to noise, This may garble the information content.
Despite the continuous presence of noise around them and inside them, biological systems have maintained and increased their invariant information content over billions of generations. Humans increase our knowledge of the external world, despite logical, mathematical, and physical
uncertainty. Biological and intellectual information handling balance random and orderly processes by means of sophisticated error detection and correction schemes. The scheme we use to correct
human knowledge is science, a combination of freely invented theories and adequately determined experiments.
In Biology
Molecular biologists have assured neuroscientists for years that the molecular structures involved in neurons are too large to be affected significantly by quantum noise.
But neurobiologists know very well that there is noise in the nervous system in the form of spontaneous firings of an action potential spike, thought to be the result of random chemical changes at the synapses. This may or may not be quantum noise amplified to the macroscopic level.
But there is no problem imagining a role for randomness in the brain in the form of quantum level noise that affects the communication of
knowledge. Noise can introduce random errors into stored memories. Noise can create random associations of ideas during memory recall.
Molecular biologists know that while most biological structures are remarkably stable, and thus
adequately determined, quantum effects drive the mutations that provide variation in the gene pool. So our question is how the typical structures of the brain have evolved to deal with microscopic, atomic level, noise - both thermal and quantal noise. Can they ignore it because they are adequately determined large objects, or might they have remained sensitive to the noise for some reason?
We can expect that if quantum noise, or even ordinary thermal noise, offered beneficial advantages, there would have been evolutionary pressure to take advantage of noise.
Proof that our sensory organs have evolved until they are working at or near quantum limits is evidenced by the eye's ability to detect a single photon (a quantum of light energy), and the nose's ability to smell a single molecule.
Biology provides many examples of ergodic creative processes following a trial and error model. They harness chance as a possibility generator, followed by an adequately determined selection mechanism with implicit information-value criteria.
Darwinian evolution is the first and greatest example of a two-stage creative process, random variation followed by critical selection, but we will consider briefly two other such processes. Both are analogous to our two-stage
Cogito model for the mind. One is at the heart of the immune system, the other provides quality control in protein/enzyme factories.
The insoluble problem for previous two-stage models has been to explain how a random event in the brain can be timed and located - perfectly synchronized! - so as to be relevant to a specific decision. The answer is it cannot be, for the simple reason that quantum events are totally unpredictable.
The Cogito solution is not single random events, one per decision, but
many random events in the brain as a result of ever-present
noise, both quantum and thermal noise, that is inherent in any information storage and communication system.
The mind, like all biological systems, has evolved in the presence of constant noise and is able to ignore that noise, unless the noise provides a significant competitive advantage, which it clearly does as the basis for
freedom and
creativity.
The only reasonable model for an indeterministic contribution is ever-present noise throughout the neural circuitry. We call it the Micro Mind.
Quantum (and even some thermal) noise in the neurons is all we need to supply random unpredictable
alternative possibilities.
And indeterminism is NOT involved in the
de-liberating Will.
The major difference between Micro and Macro is how they process noise in the brain circuits. The first accepts it, the second suppresses it.
Our "
adequately determined" Macro Mind can overcome the noise whenever it needs to make a determination on thought or action.
In his latest attempts to find the
location of where and when
indeterminism contributes to free will, Kane suggests that it is noise.
"As it happens, on my libertarian account of free will, one does not need large-scale indeterminism in the brain, in the form, say, of macro-level wave function collapses (in the manner of the Penrose/Hameroff view mentioned by Vargas). Minute indeterminacies in the timings of firings of indeterminism neurons would suffice, because the indeterminism in my view plays only an interfering role, in the form of background noise. Indeterminism does not have to "do the deed" on its own, so to speak. One does not need a downpour of indeterminism in the brain, or a thunderclap, to get free will. Just a sprinkle will do."
Four Views on Free Will, Fischer et al., p.183)